Advertisement

On the Multi-dimensional Elephant Random Walk

  • Bernard BercuEmail author
  • Lucile Laulin
Article
  • 25 Downloads

Abstract

The purpose of this paper is to investigate the asymptotic behavior of the multi-dimensional elephant random walk (MERW). It is a non-Markovian random walk which has a complete memory of its entire history. A wide range of literature is available on the one-dimensional ERW. Surprisingly, no references are available on the MERW. The goal of this paper is to fill the gap by extending the results on the one-dimensional ERW to the MERW. In the diffusive and critical regimes, we establish the almost sure convergence, the law of iterated logarithm and the quadratic strong law for the MERW. The asymptotic normality of the MERW, properly normalized, is also provided. In the superdiffusive regime, we prove the almost sure convergence as well as the mean square convergence of the MERW. All our analysis relies on asymptotic results for multi-dimensional martingales.

Keywords

Elephant random walk Multi-dimensional martingales Almost sure convergence Asymptotic normality 

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Baur, E., Bertoin, J.: Elephant random walks and their connection to Pólya-type urns. Phys. Rev. E 94, 052134 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    Boyer, D., Romo-Cruz, J.C.R.: Solvable random-walk model with memory and its relations with Markovian models of anomalous diffusion. Phys. Rev. E 90, 042136 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    Bercu, B.: On the convergence of moments in the almost sure central limit theorem for martingales with statistical applications. Stoch. Process. Appl. 111(1), 157–173 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bercu, B.: A martingale approach for the elephant random walk. J. Phys. A 51, 015201 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Businger, S.: The shark random swim (Lévy flight with memory). J. Stat. Phys. 172, 701–717 (2018)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Coletti, C.F., Gava, R., Schütz, G.M.: Central limit theorem and related results for the elephant random walk. J. Math. Phys. 58, 053303 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Coletti, C.F., Gava, R., Schütz, G.M.: A strong invariance principle for the elephant random walk. J. Stat. Mech. 123207 (2017)Google Scholar
  8. 8.
    Cressoni, J.C., Da Silva, M.A.A., Viswanathan, G.M.: Amnestically induced persistence in random walks. Phys. Rev. Lett. 98, 070603 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cressoni, J.C., Viswanathan, G.M., Da Silva, M.A.A.: Exact solution of an anisotropic 2D random walk model with strong memory correlations. J. Phys. A 46, 505002 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Da Silva, M.A.A., Cressoni, J.C., Schütz, G.M., Viswanathan, G.M., Trimper, S.: Non-Gaussian propagator for elephant random walks. Phys. Rev. E 88, 022115 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Duflo, M.: Random Iterative Models. Applications of Mathematics, vol. 34. Springer, Berlin (1997)zbMATHGoogle Scholar
  12. 12.
    Hall, P., Heyde, C.C.: Martingale Limit Theory and Its Application. Academic Press Inc., New York (1980)zbMATHGoogle Scholar
  13. 13.
    Harbola, U., Kumar, N., Lindenberg, K.: Memory-induced anomalous dynamics in a minimal random walk model. Phys. Rev. E 90, 022136 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    Harris, R.: Random walkers with extreme value memory: modelling the peak-end rule. New J. Phys. 17, 053049 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    Janson, S.: Functional limit theorems for multitype branching processes and generalized Pólya urns. Stoch. Process. Appl. 110(2), 177–245 (2004)ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Kumar, N., Harbola, U., Lindenberg, K.: Memory-induced anomalous dynamics: emergence of diffusion, subdiffusion, and superdiffusion from a single random walk model. Phys. Rev. E 82, 021101 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    Kürsten, R.: Random recursive trees and the elephant random walk. Phys. Rev. E 93, 032111 (2016)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Lyu, J., Xin, J., Yu, Y.: Residual diffusivity in elephant random walk models with stops (2017). arXiv:1705.02711
  19. 19.
    Paraan, F.N.C., Esguerra, J.P.: Exact moments in a continuous time random walk with complete memory of its history. Phys. Rev. E 74, 032101 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    Schütz, G.M., Trimper, S.: Elephants can always remember: exact long-range memory effects in a non-Markovian random walk. Phys. Rev. E 70, 045101 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Stout, W.F.: A martingale analogue of Kolmogorovs law of the itera3ed logarithm. Z. Wahrscheinlichkeitstheorie 15, 279–290 (1970)CrossRefzbMATHGoogle Scholar
  22. 22.
    Stout, W.F.: Almost Sure Convergence, Probability and Mathematical Statistics, vol. 24. Academic Press, New York (1974)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut de Mathématiques de Bordeaux, UMR 5251Université de BordeauxTalence CedexFrance
  2. 2.Département de Mathématiques, Campus de Ker lannEcole normale supérieure de RennesBruzFrance

Personalised recommendations