Advertisement

A Model of Somitogenesis

  • Weiting Zhang
  • Vanessa Mayr
  • Bertrand Ducos
  • Martin Distel
  • David BensimonEmail author
Article
  • 39 Downloads

Abstract

A quantitative description of the molecular networks that sustain morphogenesis is one of the main challenges of developmental biology. In particular, a molecular understanding of the segmentation of the antero-posterior axis in vertebrates has yet to be achieved. This process known as somitogenesis is believed to result from the interactions between a well-studied genetic oscillator and a less established posterior-moving determination wavefront. Here we describe a molecular model for somitogenesis that couples a moving morphogen wavefront with the somitogenetic oscillator. The wavefront is due to a switch between stable states that results from reciprocal negative feedbacks of Retinoic Acid (RA) on the activation of a kinase ErK and of ErK on RA synthesis. We suggest a molecular mechanism by which that switch can be triggered by the somitogenetic clock. The model quantitatively accounts for the shortening of the pre-somitic mesoderm (PSM) in zebrafish in response to the decrease during somitogenesis in the concentration of a morphogen (Fgf8). The generality and robustness of the model allows for its validation (or invalidation) in other model organisms.

Keywords

Morphogenesis Somitogenesis Quantitative biology 

Notes

Acknowledgements

We thank A.Goldbeter and V.Hakim for constructive criticism of our model. This work was partially supported by Grants ANR-10-LABX-54 MEMO LIFE and ANR-11-IDEX-0001-02 PSL* Research University and PSL Grants SuperLINE and MicroGUT.

References

  1. 1.
    Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    Dequéant, M.-L., Pourquié, O.: Segmental patterning of the vertebrate embryonic axis. Nat. Rev. Genet. 9, 370–382 (2008).  https://doi.org/10.1038/nrg2320 CrossRefGoogle Scholar
  3. 3.
    Cooke, J., Zeeman, E.C.: A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol. 58, 455–476 (1976).  https://doi.org/10.1016/S0022-5193(76)80131-2 CrossRefGoogle Scholar
  4. 4.
    Kulesa, P.M., Fraser, S.E.: Cell dynamics during somite boundary formation revealed by time-lapse analysis. Science 298, 991–995 (2002).  https://doi.org/10.1126/science.1075544 ADSCrossRefGoogle Scholar
  5. 5.
    Delfini, M.-C., Dubrulle, J., Malapert, P., Chal, J., Pourquié, O.: Control of the segmentation process by graded MAPK/ERK activation in the chick embryo. Proc. Natl. Acad. Sci. U.S.A. 102, 11343–11348 (2005).  https://doi.org/10.1073/pnas.0502933102 ADSCrossRefGoogle Scholar
  6. 6.
    Durbin, L., Brennan, C., Shiomi, K., Cooke, J., Barrios, A., Shanmugalingam, S., Guthrie, B., Lindberg, R., Holder, N.: Eph signaling is required for segmentation and differentiation of the somites. Genes Dev. 12, 3096–3109 (1998).  https://doi.org/10.1101/gad.12.19.3096 CrossRefGoogle Scholar
  7. 7.
    Pourquié, O.: Vertebrate somitogenesis. Annu. Rev. Cell Dev. Biol. 17, 311–350 (2001)CrossRefGoogle Scholar
  8. 8.
    Schröter, C., Herrgen, L., Cardona, A., Brouhard, G.J., Feldman, B., Oates, A.C.: Dynamics of zebrafish somitogenesis. Dev. Dyn. 237, 545–553 (2008)CrossRefGoogle Scholar
  9. 9.
    Pourquié, O.: Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell 145, 650–663 (2011).  https://doi.org/10.1016/j.cell.2011.05.011 CrossRefGoogle Scholar
  10. 10.
    Gomez, C., Ozbudak, E.M., Wunderlich, J., Baumann, D., Lewis, J., Pourquié, O.: Control of segment number in vertebrate embryos. Nature 454, 335–339 (2008).  https://doi.org/10.1038/nature07020 ADSCrossRefGoogle Scholar
  11. 11.
    Dubrulle, J., McGrew, M.J., Pourquié, O.: FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106, 219–232 (2001)CrossRefGoogle Scholar
  12. 12.
    Sawada, A., Shinya, M., Jiang, Y.J., Kawakami, A., Kuroiwa, A., Takeda, H.: Fgf/MAPK signalling is a crucial positional cue in somite boundary formation. Development. 128, 4873–4880 (2001)Google Scholar
  13. 13.
    Dubrulle, J., Pourquié, O.: fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature 427, 419–422 (2004).  https://doi.org/10.1038/nature02216 ADSCrossRefGoogle Scholar
  14. 14.
    Diez del Corral, R., Olivera-Martinez, I., Goriely, A., Gale, E., Maden, M., Storey, K.: Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 40, 65–79 (2003)CrossRefGoogle Scholar
  15. 15.
    Moreno, T.A., Kintner, C.: Regulation of segmental patterning by retinoic acid signaling during xenopus somitogenesis. Dev. Cell 6, 205–218 (2004).  https://doi.org/10.1016/S1534-5807(04)00026-7 CrossRefGoogle Scholar
  16. 16.
    Shimozono, S., Iimura, T., Kitaguchi, T., Higashijima, S.-I., Miyawaki, A.: Visualization of an endogenous retinoic acid gradient across embryonic development. Nature 496, 363–366 (2013).  https://doi.org/10.1038/nature12037 ADSCrossRefGoogle Scholar
  17. 17.
    Niederreither, K., Vermot, J., Le Roux, I., Schuhbaur, B., Chambon, P., Dollé, P.: The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development. 130, 2525–2534 (2003)CrossRefGoogle Scholar
  18. 18.
    Kam, R.K.T., Deng, Y., Chen, Y., Zhao, H.: Retinoic acid synthesis and functions in early embryonic development. Cell Biosci. 2, 11 (2012).  https://doi.org/10.1186/2045-3701-2-11 CrossRefGoogle Scholar
  19. 19.
    Blentic, A., Gale, E., Maden, M.: Retinoic acid signalling centres in the avian embryo identified by sites of expression of synthesising and catabolising enzymes. Dev. Dyn. 227, 114–127 (2003).  https://doi.org/10.1002/dvdy.10292 CrossRefGoogle Scholar
  20. 20.
    Sakai, Y., Meno, C., Fujii, H., Nishino, J., Shiratori, H., Saijoh, Y., Rossant, J., Hamada, H.: The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev. 15, 213–225 (2001)CrossRefGoogle Scholar
  21. 21.
    Pownall, M.E., Isaacs, H.V.: FGF signalling in vertebrate development. Morgan & Claypool Life Sciences, San Rafael (CA) (2010)CrossRefGoogle Scholar
  22. 22.
    Goldbeter, A., Gonze, D., Pourquié, O.: Sharp developmental thresholds defined through bistability by antagonistic gradients of retinoic acid and FGF signaling. Dev. Dyn. 236, 1495–1508 (2007).  https://doi.org/10.1002/dvdy.21193 CrossRefGoogle Scholar
  23. 23.
    Hamade, A., Deries, M., Begemann, G., Bally-Cuif, L., Genêt, C., Sabatier, F., Bonnieu, A., Cousin, X.: Retinoic acid activates myogenesis in vivo through Fgf8 signalling. Dev. Biol. 289, 127–140 (2006).  https://doi.org/10.1016/j.ydbio.2005.10.019 CrossRefGoogle Scholar
  24. 24.
    Moreno, T.A., Jappelli, R., Belmonte, J.C.I., Kintner, C.: Retinoic acid regulation of the Mesp-ripply feedback loop during vertebrate segmental patterning. Dev. Biol. 315, 317–330 (2008).  https://doi.org/10.1016/j.ydbio.2007.12.038 CrossRefGoogle Scholar
  25. 25.
    Hayashi, S., Shimoda, T., Nakajima, M., Tsukada, Y., Sakumura, Y., Dale, J.K., Maroto, M., Kohno, K., Matsui, T., Bessho, Y.: Sprouty4, an FGF inhibitor, displays cyclic gene expression under the control of the notch segmentation clock in the mouse PSM. PLoS ONE 4, e5603 (2009).  https://doi.org/10.1371/journal.pone.0005603 ADSCrossRefGoogle Scholar
  26. 26.
    Sari, D.W.K., Akiyama, R., Naoki, H., Ishijima, H., Bessho, Y., Matsui, T.: Time-lapse observation of stepwise regression of Erk activity in zebrafish presomitic mesoderm. Sci. Rep. 8, 4335 (2018).  https://doi.org/10.1038/s41598-018-22619-9 ADSCrossRefGoogle Scholar
  27. 27.
    Zhang, W., Ducos, B., Delagrange, M., Vriz, S., Bensimon, D.: Quantitative study of the somitogenetic wavefront in zebrafish. Development (2018).  https://doi.org/10.1101/419705 Google Scholar
  28. 28.
    Akiyama, R., Masuda, M., Tsuge, S., Bessho, Y., Matsui, T.: An anterior limit of FGF/Erk signal activity marks the earliest future somite boundary in zebrafish. Development 141, 1104–1109 (2014).  https://doi.org/10.1242/dev.098905 CrossRefGoogle Scholar
  29. 29.
    Pasini, A., Manenti, R., Rothbächer, U., Lemaire, P.: Antagonizing retinoic acid and FGF/MAPK pathways control posterior body patterning in the invertebrate chordate ciona intestinalis. PLoS ONE 7, e46193 (2012).  https://doi.org/10.1371/journal.pone.0046193 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LPS-ENS, PSL, CNRSParisFrance
  2. 2.IBENS, PSL, CNRSParisFrance
  3. 3.Children’s Cancer Research InstituteViennaAustria
  4. 4.Department of Chemistry and BiochemistryUCLALos AngelesUSA

Personalised recommendations