Nonrelativistic Hydrodynamics from Quantum Field Theory: (I) Normal Fluid Composed of Spinless Schrödinger Fields

  • Masaru HongoEmail author


We provide a complete derivation of hydrodynamic equations for nonrelativistic systems based on quantum field theories of spinless Schrödeinger fields, assuming that an initial density operator takes a special form of the local Gibbs distribution. The constructed optimized/renormalized perturbation theory for real-time evolution enables us to separately evaluate dissipative and nondissipative parts of constitutive relations. It is shown that the path-integral formula for local thermal equilibrium together with the symmetry properties of the resulting action—the nonrelativistic diffeomorphism and gauge symmetry in the thermally emergent Newton–Cartan geometry—provides a systematic way to derive the nondissipative part of constitutive relations. We further show that dissipative parts are accompanied with the entropy production operator together with two kinds of fluctuation theorems by the use of which we derive the dissipative part of constitutive relations and the second law of thermodynamics. After obtaining the exact expression for constitutive relations, we perform the derivative expansion and derive the first-order hydrodynamic (Navier–Stokes) equation with the Green–Kubo formula for transport coefficients.


Nonrelativistic hydrodynamics Renormalized/optimized perturbation theory Fluctuation theorem Nonrelativistic curved geometry Path integral 



The author thanks K. Fujii, Y. Hidaka, K. Jensen, Y. Kikuchi, M. Roberts, K. Saito, S-i. Sasa, H. Taya, K. Tomoda, and T. Tsuboi for useful discussions and comments. M.H. was supported by the Special Postdoctoral Researchers Program at RIKEN. This work was partially supported by the RIKEN iTHES/iTHEMS Project and iTHEMS STAMP working group.


  1. 1.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd edn. Butterworth Heinemann, Oxford (1987)Google Scholar
  2. 2.
    Nakajima, S.: Thermal irreversible processes (in Japanese). Busseironkenkyu 2(2), 197–208 (1957). Google Scholar
  3. 3.
    Mori, H.: Statistical-mechanical theory of transport in fluids. Phys. Rev. 112, 1829–1842 (1958). ADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    McLennan, J.A.: Statistical mechanics of transport in fluids. Phys. Fluids 3(4), 493–502 (1960)ADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    McLennan, J.A.: Introduction to Non equilibrium Statistical Mechanics. Prentice Hall Advanced Reference Series. Prentice Hall, Upper Saddle River (1988)Google Scholar
  6. 6.
    Zubarev, D.N., Prozorkevich, A.V., Smolyanskii, S.A.: Derivation of nonlinear generalized equations of quantum relativistic hydrodynamics. Theor. Math. Phys. 40(3), 821–831 (1979). MathSciNetzbMATHGoogle Scholar
  7. 7.
    Zubarev, D.N., Morozov, V., Ropke, G.: Statistical Mechanics of Nonequilibrium Processes, Volume 1: Basic Concepts, Kinetic Theory, 1st edn. Wiley-VCH, Weinheim (1996)zbMATHGoogle Scholar
  8. 8.
    Zubarev, D.N., Morozov, V., Ropke, G.: Statistical Mechanics of Nonequilibrium Processes, Volume 2: Relaxation and Hydrodynamic Processes. Wiley-VCH, Weinheim (1997)zbMATHGoogle Scholar
  9. 9.
    Kawasaki, K., Gunton, J.D.: Theory of nonlinear transport processes: nonlinear shear viscosity and normal stress effects. Phys. Rev. A 8, 2048–2064 (1973). ADSGoogle Scholar
  10. 10.
    Banerjee, N., Bhattacharya, J., Bhattacharyya, S., Jain, S., Minwalla, S.: Constraints on fluid dynamics from equilibrium partition functions. J. High Energy Phys. 1209, 46 (2012). ADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    Jensen, K., Kaminski, M., Kovtun, P., Meyer, R., Ritz, A., Yarom, A.: Towards hydrodynamics without an entropy current. Phys. Rev. Lett. 109, 101601 (2012). ADSGoogle Scholar
  12. 12.
    Grozdanov, S., Polonyi, J.: Viscosity and dissipative hydrodynamics from effective field theory. Phys. Rev. D 91(10), 105031 (2015). ADSMathSciNetGoogle Scholar
  13. 13.
    Haehl, F.M., Loganayagam, R., Rangamani, M.: Adiabatic hydrodynamics: the eightfold way to dissipation. J. High Energy Phys. 05, 60 (2015). ADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Crossley, M., Glorioso, P., Liu, H.: Effective field theory of dissipative fluids. J. High Energy Phys. 09, 95 (2017). ADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Haehl, F.M., Loganayagam, R., Rangamani, M.: Topological sigma models & dissipative hydrodynamics. J. High Energy Phys. 04, 39 (2016). ADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    Haehl, F.M., Loganayagam, R., Rangamani, M.: Schwinger–Keldysh formalism. Part I: BRST symmetries and superspace. J. High Energy Phys. 06, 069 (2017). ADSMathSciNetzbMATHGoogle Scholar
  17. 17.
    Haehl, F.M., Loganayagam, R., Rangamani, M.: Schwinger–Keldysh formalism. Part II: thermal equivariant cohomology. J. High Energy Phys. 06, 070 (2017). ADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Jensen, K., Pinzani-Fokeev, N., Yarom, A.: Dissipative hydrodynamics in superspace. J. High Energy Phys. 2018, 127 (2017)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Glorioso, P., Crossley, M., Liu, H.: Effective field theory of dissipative fluids (II): classical limit, dynamical KMS symmetry and entropy current. J. High Energy Phys. 09, 096 (2017). ADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Haehl, F.M., Loganayagam, R., Rangamani, M.: Two roads to hydrodynamic effective actions: a comparison (2017)Google Scholar
  21. 21.
    Sasa, S.: Derivation of hydrodynamics from the Hamiltonian description of particle systems. Phys. Rev. Lett. 112(10), 100602 (2014). ADSGoogle Scholar
  22. 22.
    Yamada, T., Kawasaki, K.: Nonlinear effects in the shear viscosity of critical mixtures. Prog. Theor. Phys. 38(5), 1031–1051 (1967). ADSGoogle Scholar
  23. 23.
    Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997). ADSGoogle Scholar
  24. 24.
    Evans, D.J., Cohen, E.G.D., Morriss, G.P.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401–2404 (1993). ADSzbMATHGoogle Scholar
  25. 25.
    Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995). ADSGoogle Scholar
  26. 26.
    Kurchan, J.: Fluctuation theorem for stochastic dynamics. J. Phys. A 31(16), 3719 (1998).
  27. 27.
    Maes, C.: The fluctuation theorem as a gibbs property. J. Stat. Phys. 95(1), 367–392 (1999). ADSMathSciNetzbMATHGoogle Scholar
  28. 28.
    Lebowitz, J.L., Spohn, H.: A Gallavotti–Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95(1), 333–365 (1999). ADSMathSciNetzbMATHGoogle Scholar
  29. 29.
    Crooks, G.E.: Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 61, 2361–2366 (2000). ADSGoogle Scholar
  30. 30.
    Jarzynski, C.: Hamiltonian derivation of a detailed fluctuation theorem. J. Stat. Phys. 98(1), 77–102 (2000). MathSciNetzbMATHGoogle Scholar
  31. 31.
    Seifert, U.: Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040,602 (2005). Google Scholar
  32. 32.
    Hayata, T., Hidaka, Y., Noumi, T., Hongo, M.: Relativistic hydrodynamics from quantum field theory on the basis of the generalized Gibbs ensemble method. Phys. Rev. D 92(6), 065,008 (2015). Google Scholar
  33. 33.
    Hongo, M.: Path-integral formula for local thermal equilibrium. Ann. Phys. 383, 1–32 (2017). ADSMathSciNetzbMATHGoogle Scholar
  34. 34.
    Gromov, A., Abanov, A.G.: Thermal Hall effect and geometry with torsion. Phys. Rev. Lett. 114(1), 016,802 (2015). Google Scholar
  35. 35.
    Jensen, K.: On the coupling of Galilean-invariant field theories to curved spacetime (2014)Google Scholar
  36. 36.
    Jensen, K.: Aspects of hot Galilean field theory. J. High Energy Phys. 04, 123 (2015). ADSMathSciNetzbMATHGoogle Scholar
  37. 37.
    Banerjee, N., Dutta, S., Jain, A.: Equilibrium partition function for nonrelativistic fluids. Phys. Rev. D 92, 081,701 (2015). Google Scholar
  38. 38.
    Banerjee, N., Dutta, S., Jain, A.: Null fluids: a new viewpoint of Galilean fluids. Phys. Rev. D 93(10), 105,020 (2016). MathSciNetGoogle Scholar
  39. 39.
    de Boer, J., Hartong, J., Obers, N.A., Sybesma, W., Vandoren, S.: Perfect fluids. SciPost Phys. 5(1), 003 (2018).
  40. 40.
    Jensen, K., Karch, A.: Revisiting non-relativistic limits. J. High Energy Phys. 04, 155 (2015). ADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    Son, D.T.: Newton–Cartan geometry and the quantum hall effect (2013)Google Scholar
  42. 42.
    Banerjee, R., Mitra, A., Mukherjee, P.: A new formulation of non-relativistic diffeomorphism invariance. Phys. Lett. B 737, 369–373 (2014). ADSzbMATHGoogle Scholar
  43. 43.
    Geracie, M., Son, D.T., Wu, C., Wu, S.F.: Spacetime symmetries of the quantum Hall effect. Phys. Rev. D 91, 045,030 (2015). MathSciNetGoogle Scholar
  44. 44.
    Banerjee, R., Mitra, A., Mukherjee, P.: Localization of the Galilean symmetry and dynamical realization of Newton–Cartan geometry. Class. Quant. Gravity 32(4), 045,010 (2015). MathSciNetzbMATHGoogle Scholar
  45. 45.
    Brauner, T., Endlich, S., Monin, A., Penco, R.: General coordinate invariance in quantum many-body systems. Phys. Rev. D 90(10), 105,016 (2014). Google Scholar
  46. 46.
    Hartong, J., Kiritsis, E., Obers, N.A.: Schrödinger invariance from Lifshitz isometries in holography and field theory. Phys. Rev. D 92, 066,003 (2015). Google Scholar
  47. 47.
    Bergshoeff, E.A., Hartong, J., Rosseel, J.: Torsional Newton-Cartan geometry and the Schrödinger algebra. Class. Quant. Gravity 32(13), 135,017 (2015). zbMATHGoogle Scholar
  48. 48.
    Geracie, M., Prabhu, K., Roberts, M.M.: Curved non-relativistic spacetimes, Newtonian gravitation and massive matter. J. Math. Phys. 56(10), 103,505 (2015). MathSciNetzbMATHGoogle Scholar
  49. 49.
    Geracie, M., Prabhu, K., Roberts, M.M.: Fields and fluids on curved non-relativistic spacetimes. J. High Energy Phys. 08, 042 (2015). ADSMathSciNetzbMATHGoogle Scholar
  50. 50.
    de Boer, J., Hartong, J., Obers, N.A., Sybesma, W., Vandoren, S.: Hydrodynamic modes of homogeneous and isotropic fluids. SciPost Phys. 5(2), 014 (2018).
  51. 51.
    Hongo, M., Fujii, K.: Nonrelativistic hydrodynamics from quantum field theory: (II) Spinful fluid and Hall transport under magnetic field (in preparation)Google Scholar
  52. 52.
    Matsubara, T.: A new approach to quantum-statistical mechanics. Prog. Theor. Phys. 14(4), 351–378 (1955). ADSMathSciNetzbMATHGoogle Scholar
  53. 53.
    Abrikosov, A.A., Gorkov, L.P., Dzyaloshinskii, I.E.: On the application of quantum-field-theory methods to problems of quantum statistics at finite temperatures. Sov. Phys. JETP 9(3), 636–641 (1959)Google Scholar
  54. 54.
    Kleinert, H.: Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets. EBL-Schweitzer. World Scientific (2009).
  55. 55.
    Jakovác, A., Patkós, A.: Resummation and Renormalization in Effective Theories of Particle Physics. Lecture Notes in Physics. Springer International Publishing (2015).
  56. 56.
    Green, M.S.: Markoff random processes and the statistical mechanics of timedependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22(3), 398–413 (1954). ADSMathSciNetGoogle Scholar
  57. 57.
    Nakano, H.: A method of calculation of electrical conductivity. Prog. Theor. Phys. 15(1), 77–79 (1956).
  58. 58.
    Kubo, R.: Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12(6), 570–586 (1957). ADSMathSciNetGoogle Scholar
  59. 59.
    Stevenson, P.M.: Optimized perturbation theory. Phys. Rev. D 23, 2916 (1981). ADSGoogle Scholar
  60. 60.
    Ernst, M.H., Hauge, E.H., van Leeuwen, J.M.J.: Asymptotic time behavior of correlation functions. Phys. Rev. Lett. 25, 1254–1256 (1970). ADSGoogle Scholar
  61. 61.
    Dorfman, J.R., Cohen, E.G.D.: Velocity correlation functions in two and three dimensions. Phys. Rev. Lett. 25, 1257–1260 (1970). ADSGoogle Scholar
  62. 62.
    Pomeau, Y., Résibois, P.: Time dependent correlation functions and mode-mode coupling theories. Phys. Rep. 19(2), 63–139 (1975). ADSGoogle Scholar
  63. 63.
    Hoyos, C., Son, D.T.: Hall viscosity and electromagnetic response. Phys. Rev. Lett. 108, 066,805 (2012). Google Scholar
  64. 64.
    Fujii, K., Nishida, Y.: Low-energy effective field theory of superfluid \(^3\)He-B and its gyromagnetic and Hall responses. Ann. Phys. 395, 170–182 (2018).
  65. 65.
    Becattini, F., Bucciantini, L., Grossi, E., Tinti, L.: Local thermodynamical equilibrium and the beta frame for a quantum relativistic fluid. Eur. Phys. J. C 75(5), 191 (2015). ADSGoogle Scholar
  66. 66.
    Khalatnikov, I.: An Introduction to the Theory of Superfluidity. Advanced Books Classics Series. Addison-Wesley Publishing Company (1989).
  67. 67.
    Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221–260 (1978). ADSMathSciNetzbMATHGoogle Scholar
  68. 68.
    Esposito, R., Marra, R.: On the derivation of the incompressible mavier-stokes equation for hamiltonian particle systems. J. Stat. Phys. 74(5), 981–1004 (1994). ADSzbMATHGoogle Scholar
  69. 69.
    Mori, H.: Transport, collective motion, and brownian motion. Prog. Theor. Phys. 33(3), 423–455 (1965). ADSzbMATHGoogle Scholar
  70. 70.
    Nambu, Y., Jona-Lasinio, G.: Dynamical model of elementary particles based on an analogy with superconductivity. I. Phys. Rev. 122, 345–358 (1961). ADSGoogle Scholar
  71. 71.
    Goldstone, J.: Field theories with superconductor solutions. Nuovo Cimento 19, 154–164 (1961). MathSciNetzbMATHGoogle Scholar
  72. 72.
    Goldstone, J., Salam, A., Weinberg, S.: Broken symmetries. Phys. Rev. 127, 965–970 (1962). ADSMathSciNetzbMATHGoogle Scholar
  73. 73.
    Martin, P.C., Parodi, O., Pershan, P.S.: Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids. Phys. Rev. A 6, 2401–2420 (1972). ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations


Personalised recommendations