Advertisement

Nonrelativistic Hydrodynamics from Quantum Field Theory: (I) Normal Fluid Composed of Spinless Schrödinger Fields

  • Masaru HongoEmail author
Article
  • 18 Downloads

Abstract

We provide a complete derivation of hydrodynamic equations for nonrelativistic systems based on quantum field theories of spinless Schrödeinger fields, assuming that an initial density operator takes a special form of the local Gibbs distribution. The constructed optimized/renormalized perturbation theory for real-time evolution enables us to separately evaluate dissipative and nondissipative parts of constitutive relations. It is shown that the path-integral formula for local thermal equilibrium together with the symmetry properties of the resulting action—the nonrelativistic diffeomorphism and gauge symmetry in the thermally emergent Newton–Cartan geometry—provides a systematic way to derive the nondissipative part of constitutive relations. We further show that dissipative parts are accompanied with the entropy production operator together with two kinds of fluctuation theorems by the use of which we derive the dissipative part of constitutive relations and the second law of thermodynamics. After obtaining the exact expression for constitutive relations, we perform the derivative expansion and derive the first-order hydrodynamic (Navier–Stokes) equation with the Green–Kubo formula for transport coefficients.

Keywords

Nonrelativistic hydrodynamics Renormalized/optimized perturbation theory Fluctuation theorem Nonrelativistic curved geometry Path integral 

Notes

Acknowledgements

The author thanks K. Fujii, Y. Hidaka, K. Jensen, Y. Kikuchi, M. Roberts, K. Saito, S-i. Sasa, H. Taya, K. Tomoda, and T. Tsuboi for useful discussions and comments. M.H. was supported by the Special Postdoctoral Researchers Program at RIKEN. This work was partially supported by the RIKEN iTHES/iTHEMS Project and iTHEMS STAMP working group.

References

  1. 1.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, 2nd edn. Butterworth Heinemann, Oxford (1987)Google Scholar
  2. 2.
    Nakajima, S.: Thermal irreversible processes (in Japanese). Busseironkenkyu 2(2), 197–208 (1957).  https://doi.org/10.11177/busseiron1957.2.197 Google Scholar
  3. 3.
    Mori, H.: Statistical-mechanical theory of transport in fluids. Phys. Rev. 112, 1829–1842 (1958).  https://doi.org/10.1103/PhysRev.112.1829 ADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    McLennan, J.A.: Statistical mechanics of transport in fluids. Phys. Fluids 3(4), 493–502 (1960)ADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    McLennan, J.A.: Introduction to Non equilibrium Statistical Mechanics. Prentice Hall Advanced Reference Series. Prentice Hall, Upper Saddle River (1988)Google Scholar
  6. 6.
    Zubarev, D.N., Prozorkevich, A.V., Smolyanskii, S.A.: Derivation of nonlinear generalized equations of quantum relativistic hydrodynamics. Theor. Math. Phys. 40(3), 821–831 (1979).  https://doi.org/10.1007/BF01032069 MathSciNetzbMATHGoogle Scholar
  7. 7.
    Zubarev, D.N., Morozov, V., Ropke, G.: Statistical Mechanics of Nonequilibrium Processes, Volume 1: Basic Concepts, Kinetic Theory, 1st edn. Wiley-VCH, Weinheim (1996)zbMATHGoogle Scholar
  8. 8.
    Zubarev, D.N., Morozov, V., Ropke, G.: Statistical Mechanics of Nonequilibrium Processes, Volume 2: Relaxation and Hydrodynamic Processes. Wiley-VCH, Weinheim (1997)zbMATHGoogle Scholar
  9. 9.
    Kawasaki, K., Gunton, J.D.: Theory of nonlinear transport processes: nonlinear shear viscosity and normal stress effects. Phys. Rev. A 8, 2048–2064 (1973).  https://doi.org/10.1103/PhysRevA.8.2048 ADSGoogle Scholar
  10. 10.
    Banerjee, N., Bhattacharya, J., Bhattacharyya, S., Jain, S., Minwalla, S.: Constraints on fluid dynamics from equilibrium partition functions. J. High Energy Phys. 1209, 46 (2012).  https://doi.org/10.1007/JHEP09(2012)046 ADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    Jensen, K., Kaminski, M., Kovtun, P., Meyer, R., Ritz, A., Yarom, A.: Towards hydrodynamics without an entropy current. Phys. Rev. Lett. 109, 101601 (2012).  https://doi.org/10.1103/PhysRevLett.109.101601 ADSGoogle Scholar
  12. 12.
    Grozdanov, S., Polonyi, J.: Viscosity and dissipative hydrodynamics from effective field theory. Phys. Rev. D 91(10), 105031 (2015).  https://doi.org/10.1103/PhysRevD.91.105031 ADSMathSciNetGoogle Scholar
  13. 13.
    Haehl, F.M., Loganayagam, R., Rangamani, M.: Adiabatic hydrodynamics: the eightfold way to dissipation. J. High Energy Phys. 05, 60 (2015).  https://doi.org/10.1007/JHEP05(2015)060 ADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Crossley, M., Glorioso, P., Liu, H.: Effective field theory of dissipative fluids. J. High Energy Phys. 09, 95 (2017).  https://doi.org/10.1007/JHEP09(2017)095 ADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Haehl, F.M., Loganayagam, R., Rangamani, M.: Topological sigma models & dissipative hydrodynamics. J. High Energy Phys. 04, 39 (2016).  https://doi.org/10.1007/JHEP04(2016)039 ADSMathSciNetzbMATHGoogle Scholar
  16. 16.
    Haehl, F.M., Loganayagam, R., Rangamani, M.: Schwinger–Keldysh formalism. Part I: BRST symmetries and superspace. J. High Energy Phys. 06, 069 (2017).  https://doi.org/10.1007/JHEP06(2017)069 ADSMathSciNetzbMATHGoogle Scholar
  17. 17.
    Haehl, F.M., Loganayagam, R., Rangamani, M.: Schwinger–Keldysh formalism. Part II: thermal equivariant cohomology. J. High Energy Phys. 06, 070 (2017).  https://doi.org/10.1007/JHEP06(2017)070 ADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Jensen, K., Pinzani-Fokeev, N., Yarom, A.: Dissipative hydrodynamics in superspace. J. High Energy Phys. 2018, 127 (2017)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Glorioso, P., Crossley, M., Liu, H.: Effective field theory of dissipative fluids (II): classical limit, dynamical KMS symmetry and entropy current. J. High Energy Phys. 09, 096 (2017).  https://doi.org/10.1007/JHEP09(2017)096 ADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    Haehl, F.M., Loganayagam, R., Rangamani, M.: Two roads to hydrodynamic effective actions: a comparison (2017)Google Scholar
  21. 21.
    Sasa, S.: Derivation of hydrodynamics from the Hamiltonian description of particle systems. Phys. Rev. Lett. 112(10), 100602 (2014).  https://doi.org/10.1103/PhysRevLett.112.100602 ADSGoogle Scholar
  22. 22.
    Yamada, T., Kawasaki, K.: Nonlinear effects in the shear viscosity of critical mixtures. Prog. Theor. Phys. 38(5), 1031–1051 (1967).  https://doi.org/10.1143/PTP.38.1031 ADSGoogle Scholar
  23. 23.
    Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997).  https://doi.org/10.1103/PhysRevLett.78.2690 ADSGoogle Scholar
  24. 24.
    Evans, D.J., Cohen, E.G.D., Morriss, G.P.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401–2404 (1993).  https://doi.org/10.1103/PhysRevLett.71.2401 ADSzbMATHGoogle Scholar
  25. 25.
    Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995).  https://doi.org/10.1103/PhysRevLett.74.2694 ADSGoogle Scholar
  26. 26.
    Kurchan, J.: Fluctuation theorem for stochastic dynamics. J. Phys. A 31(16), 3719 (1998). http://stacks.iop.org/0305-4470/31/i=16/a=003
  27. 27.
    Maes, C.: The fluctuation theorem as a gibbs property. J. Stat. Phys. 95(1), 367–392 (1999).  https://doi.org/10.1023/A:1004541830999 ADSMathSciNetzbMATHGoogle Scholar
  28. 28.
    Lebowitz, J.L., Spohn, H.: A Gallavotti–Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95(1), 333–365 (1999).  https://doi.org/10.1023/A:1004589714161 ADSMathSciNetzbMATHGoogle Scholar
  29. 29.
    Crooks, G.E.: Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 61, 2361–2366 (2000).  https://doi.org/10.1103/PhysRevE.61.2361 ADSGoogle Scholar
  30. 30.
    Jarzynski, C.: Hamiltonian derivation of a detailed fluctuation theorem. J. Stat. Phys. 98(1), 77–102 (2000).  https://doi.org/10.1023/A:1018670721277 MathSciNetzbMATHGoogle Scholar
  31. 31.
    Seifert, U.: Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 95, 040,602 (2005).  https://doi.org/10.1103/PhysRevLett.95.040602 Google Scholar
  32. 32.
    Hayata, T., Hidaka, Y., Noumi, T., Hongo, M.: Relativistic hydrodynamics from quantum field theory on the basis of the generalized Gibbs ensemble method. Phys. Rev. D 92(6), 065,008 (2015).  https://doi.org/10.1103/PhysRevD.92.065008 Google Scholar
  33. 33.
    Hongo, M.: Path-integral formula for local thermal equilibrium. Ann. Phys. 383, 1–32 (2017).  https://doi.org/10.1016/j.aop.2017.04.004 ADSMathSciNetzbMATHGoogle Scholar
  34. 34.
    Gromov, A., Abanov, A.G.: Thermal Hall effect and geometry with torsion. Phys. Rev. Lett. 114(1), 016,802 (2015).  https://doi.org/10.1103/PhysRevLett.114.016802 Google Scholar
  35. 35.
    Jensen, K.: On the coupling of Galilean-invariant field theories to curved spacetime (2014)Google Scholar
  36. 36.
    Jensen, K.: Aspects of hot Galilean field theory. J. High Energy Phys. 04, 123 (2015).  https://doi.org/10.1007/JHEP04(2015)123 ADSMathSciNetzbMATHGoogle Scholar
  37. 37.
    Banerjee, N., Dutta, S., Jain, A.: Equilibrium partition function for nonrelativistic fluids. Phys. Rev. D 92, 081,701 (2015).  https://doi.org/10.1103/PhysRevD.92.081701 Google Scholar
  38. 38.
    Banerjee, N., Dutta, S., Jain, A.: Null fluids: a new viewpoint of Galilean fluids. Phys. Rev. D 93(10), 105,020 (2016).  https://doi.org/10.1103/PhysRevD.93.105020 MathSciNetGoogle Scholar
  39. 39.
    de Boer, J., Hartong, J., Obers, N.A., Sybesma, W., Vandoren, S.: Perfect fluids. SciPost Phys. 5(1), 003 (2018).  https://doi.org/10.21468/SciPostPhys.5.1.003
  40. 40.
    Jensen, K., Karch, A.: Revisiting non-relativistic limits. J. High Energy Phys. 04, 155 (2015).  https://doi.org/10.1007/JHEP04(2015)155 ADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    Son, D.T.: Newton–Cartan geometry and the quantum hall effect (2013)Google Scholar
  42. 42.
    Banerjee, R., Mitra, A., Mukherjee, P.: A new formulation of non-relativistic diffeomorphism invariance. Phys. Lett. B 737, 369–373 (2014).  https://doi.org/10.1016/j.physletb.2014.09.004 ADSzbMATHGoogle Scholar
  43. 43.
    Geracie, M., Son, D.T., Wu, C., Wu, S.F.: Spacetime symmetries of the quantum Hall effect. Phys. Rev. D 91, 045,030 (2015).  https://doi.org/10.1103/PhysRevD.91.045030 MathSciNetGoogle Scholar
  44. 44.
    Banerjee, R., Mitra, A., Mukherjee, P.: Localization of the Galilean symmetry and dynamical realization of Newton–Cartan geometry. Class. Quant. Gravity 32(4), 045,010 (2015).  https://doi.org/10.1088/0264-9381/32/4/045010 MathSciNetzbMATHGoogle Scholar
  45. 45.
    Brauner, T., Endlich, S., Monin, A., Penco, R.: General coordinate invariance in quantum many-body systems. Phys. Rev. D 90(10), 105,016 (2014).  https://doi.org/10.1103/PhysRevD.90.105016 Google Scholar
  46. 46.
    Hartong, J., Kiritsis, E., Obers, N.A.: Schrödinger invariance from Lifshitz isometries in holography and field theory. Phys. Rev. D 92, 066,003 (2015).  https://doi.org/10.1103/PhysRevD.92.066003 Google Scholar
  47. 47.
    Bergshoeff, E.A., Hartong, J., Rosseel, J.: Torsional Newton-Cartan geometry and the Schrödinger algebra. Class. Quant. Gravity 32(13), 135,017 (2015).  https://doi.org/10.1088/0264-9381/32/13/135017 zbMATHGoogle Scholar
  48. 48.
    Geracie, M., Prabhu, K., Roberts, M.M.: Curved non-relativistic spacetimes, Newtonian gravitation and massive matter. J. Math. Phys. 56(10), 103,505 (2015).  https://doi.org/10.1063/1.4932967 MathSciNetzbMATHGoogle Scholar
  49. 49.
    Geracie, M., Prabhu, K., Roberts, M.M.: Fields and fluids on curved non-relativistic spacetimes. J. High Energy Phys. 08, 042 (2015).  https://doi.org/10.1007/JHEP08(2015)042 ADSMathSciNetzbMATHGoogle Scholar
  50. 50.
    de Boer, J., Hartong, J., Obers, N.A., Sybesma, W., Vandoren, S.: Hydrodynamic modes of homogeneous and isotropic fluids. SciPost Phys. 5(2), 014 (2018).  https://doi.org/10.21468/SciPostPhys.5.2.014
  51. 51.
    Hongo, M., Fujii, K.: Nonrelativistic hydrodynamics from quantum field theory: (II) Spinful fluid and Hall transport under magnetic field (in preparation)Google Scholar
  52. 52.
    Matsubara, T.: A new approach to quantum-statistical mechanics. Prog. Theor. Phys. 14(4), 351–378 (1955).  https://doi.org/10.1143/PTP.14.351 ADSMathSciNetzbMATHGoogle Scholar
  53. 53.
    Abrikosov, A.A., Gorkov, L.P., Dzyaloshinskii, I.E.: On the application of quantum-field-theory methods to problems of quantum statistics at finite temperatures. Sov. Phys. JETP 9(3), 636–641 (1959)Google Scholar
  54. 54.
    Kleinert, H.: Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets. EBL-Schweitzer. World Scientific (2009). https://books.google.co.jp/books?id=VJ1qNz5xYzkC
  55. 55.
    Jakovác, A., Patkós, A.: Resummation and Renormalization in Effective Theories of Particle Physics. Lecture Notes in Physics. Springer International Publishing (2015). https://books.google.co.jp/books?id=57vfCgAAQBAJ
  56. 56.
    Green, M.S.: Markoff random processes and the statistical mechanics of timedependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22(3), 398–413 (1954).  https://doi.org/10.1063/1.1740082 ADSMathSciNetGoogle Scholar
  57. 57.
    Nakano, H.: A method of calculation of electrical conductivity. Prog. Theor. Phys. 15(1), 77–79 (1956).  https://doi.org/10.1143/PTP.15.77. http://ptp.oxfordjournals.org/content/15/1/77.short
  58. 58.
    Kubo, R.: Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12(6), 570–586 (1957).  https://doi.org/10.1143/JPSJ.12.570 ADSMathSciNetGoogle Scholar
  59. 59.
    Stevenson, P.M.: Optimized perturbation theory. Phys. Rev. D 23, 2916 (1981).  https://doi.org/10.1103/PhysRevD.23.2916 ADSGoogle Scholar
  60. 60.
    Ernst, M.H., Hauge, E.H., van Leeuwen, J.M.J.: Asymptotic time behavior of correlation functions. Phys. Rev. Lett. 25, 1254–1256 (1970).  https://doi.org/10.1103/PhysRevLett.25.1254 ADSGoogle Scholar
  61. 61.
    Dorfman, J.R., Cohen, E.G.D.: Velocity correlation functions in two and three dimensions. Phys. Rev. Lett. 25, 1257–1260 (1970).  https://doi.org/10.1103/PhysRevLett.25.1257 ADSGoogle Scholar
  62. 62.
    Pomeau, Y., Résibois, P.: Time dependent correlation functions and mode-mode coupling theories. Phys. Rep. 19(2), 63–139 (1975).  https://doi.org/10.1016/0370-1573(75)90019-8 ADSGoogle Scholar
  63. 63.
    Hoyos, C., Son, D.T.: Hall viscosity and electromagnetic response. Phys. Rev. Lett. 108, 066,805 (2012).  https://doi.org/10.1103/PhysRevLett.108.066805 Google Scholar
  64. 64.
    Fujii, K., Nishida, Y.: Low-energy effective field theory of superfluid \(^3\)He-B and its gyromagnetic and Hall responses. Ann. Phys. 395, 170–182 (2018).  https://doi.org/10.1016/j.aop.2018.06.003
  65. 65.
    Becattini, F., Bucciantini, L., Grossi, E., Tinti, L.: Local thermodynamical equilibrium and the beta frame for a quantum relativistic fluid. Eur. Phys. J. C 75(5), 191 (2015).  https://doi.org/10.1140/epjc/s10052-015-3384-y ADSGoogle Scholar
  66. 66.
    Khalatnikov, I.: An Introduction to the Theory of Superfluidity. Advanced Books Classics Series. Addison-Wesley Publishing Company (1989). https://books.google.co.jp/books?id=aIrvAAAAMAAJ
  67. 67.
    Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221–260 (1978).  https://doi.org/10.1103/RevModPhys.50.221 ADSMathSciNetzbMATHGoogle Scholar
  68. 68.
    Esposito, R., Marra, R.: On the derivation of the incompressible mavier-stokes equation for hamiltonian particle systems. J. Stat. Phys. 74(5), 981–1004 (1994).  https://doi.org/10.1007/BF02188213 ADSzbMATHGoogle Scholar
  69. 69.
    Mori, H.: Transport, collective motion, and brownian motion. Prog. Theor. Phys. 33(3), 423–455 (1965).  https://doi.org/10.1143/PTP.33.423 ADSzbMATHGoogle Scholar
  70. 70.
    Nambu, Y., Jona-Lasinio, G.: Dynamical model of elementary particles based on an analogy with superconductivity. I. Phys. Rev. 122, 345–358 (1961).  https://doi.org/10.1103/PhysRev.122.345 ADSGoogle Scholar
  71. 71.
    Goldstone, J.: Field theories with superconductor solutions. Nuovo Cimento 19, 154–164 (1961).  https://doi.org/10.1007/BF02812722 MathSciNetzbMATHGoogle Scholar
  72. 72.
    Goldstone, J., Salam, A., Weinberg, S.: Broken symmetries. Phys. Rev. 127, 965–970 (1962).  https://doi.org/10.1103/PhysRev.127.965 ADSMathSciNetzbMATHGoogle Scholar
  73. 73.
    Martin, P.C., Parodi, O., Pershan, P.S.: Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids. Phys. Rev. A 6, 2401–2420 (1972).  https://doi.org/10.1103/PhysRevA.6.2401 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.RIKEN iTHEMSRIKENWakoJapan

Personalised recommendations