Advertisement

Is Telegraph Noise A Good Model for the Environment of Mesoscopic Systems?

  • A. Aharony
  • O. Entin-Wohlman
  • D. Chowdhury
  • S. Dattagupta
Article
  • 18 Downloads

Abstract

Some papers represent the environment of a mesosopic system (e.g., a qubit in a quantum computer or a quantum junction) by a neighboring fluctuator, which generates a fluctuating electric field—a telegraph noise (TN)—on the electrons in the system. An example is a two-level system, that randomly fluctuates between two states with Boltzmann weights determined by an effective temperature. To consider whether this description is physically reasonable, we study it in the simplest example of a quantum dot which is coupled to two electronic reservoirs and to a single fluctuator. Averaging over the histories of the TN yields an inflow of energy flux from the fluctuator into the electronic reservoirs, which persists even when the fluctuator’s effective temperature is equal to (or smaller than) the common reservoirs temperature. Therefore, the fuluctuator’s temperature cannot represent a real environment. Since our formalism allows for any time dependent energy on the dot, we also apply it to the case of a non-random electric field which oscillates periodically in time. Averaging over a period of these oscillations yields results which are very similar to those of the TN model, including the energy flow into the electronic reservoirs. We conclude that both models may not give good representations of the true environment.

Keywords

Telegraph noise Quantum junctions Energy currents Periodic time-dependent fields 

Notes

Acknowledgements

We thank Shmuel Gurvitz for discussions. This work was supported by the Israeli Science Foundation (ISF), by the infrastructure program of Israel Ministry of Science and Technology under contract 3-11173, and by a grant from the Pazy foundation. SD is grateful to the Indian National Science Academy for support through its Senior Scientist scheme.

References

  1. 1.
    Aharony, A., Hohenberg, P.C.: Universal relations among thermodynamic critical amplitudes. Phys. Rev. B 13, 3081–3090 (1976)ADSCrossRefGoogle Scholar
  2. 2.
    Hohenberg, P.C., Aharony, A., Halperin, B.I., Siggia, E.D.: Two-scale-factor universality and the renormalization group. Phys. Rev. B 13, 2986–2996 (1976)ADSCrossRefGoogle Scholar
  3. 3.
    Aharony, A., Hohenberg, P.C.: Universal relations among critical amplitudes. Physica 86–88B, 611–612 (1977)Google Scholar
  4. 4.
    Privman, V., Hohenberg, P.C., Aharony, A.: Universal critical-point amplitude relations. In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 14, pp. 1–134, 364–367. Academic Press, New York (1991)Google Scholar
  5. 5.
    Dattagupta, S.: Relaxation Phenomena in Condensed Matter Physics. Academic Press, Orlando (1987)Google Scholar
  6. 6.
    Kogan, S.M.: Electronic Noise and Fluctuations in Solids. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  7. 7.
    Itakura, T., Tokura, Y.: Dephasing due to background charge fluctuations. Phys. Rev. B 67, 195320 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Bergli, J., Galperin, Y.M., Altshuler, B.L.: Decoherence in qubits due to low-frequency noise. New J. Phys. 11, 025002 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Aharony, A., Gurvitz, S., Entin-Wohlman, O., Dattagupta, S.: Retrieving qubit information despite decoherence. Phys. Rev. B 82, 245417 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    Galperin, Yu.M., Zou, N., Chao, K.A.: Resonant tunneling in the presence of a two-level fluctuator: average transparency. Phys. Rev. B 49, 13728 (1994)Google Scholar
  11. 11.
    Galperin, Y.M., Chao, K.A.: Resonant tunneling in the presence of a two-level fluctuator: low-frequency noise. Phys. Rev. B 52, 12126 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    Abel, B., Marquardt, F.: Decoherence by quantum telegraph noise: a numerical evaluation. Phys. Rev. B 78, 201302(R) (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Kamil, E., Dattagupta, S.: Dephasing of a qubit due to quantum and classical noise. Pramana - J. Phys. 79, 357 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Wold, H.J., Brox, H., Galperin, Y.M., Bergli, J.: Decoherence of a qubit due to either a quantum fluctuator, or a classical telegraph noise. Phys. Rev. B 86, 205404 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Galperin, Y.M., Altshuler, B.L., Shantsev, D.V.: Low frequency noise as a source of dephasing of a qubit. In: Lerner, I.V., Altshuler, B.L., Gefen, Y. (eds.) Fundamental Problems of Mesoscopic Physics, pp. 141–65. Kluwer, Dordrecht (2004)CrossRefGoogle Scholar
  16. 16.
    Gurvitz, S., Aharony, A., Entin-Wohlman, O.: Temporal evolution of resonant transmission under telegraph noise. Phys. Rev. B 94, 075437 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    Entin-Wohlman, O., Chowdhury, D., Aharony, A., Dattagupta, S.: Heat currents in electronic junctions driven by telegraph noise. Phys. Rev. B 96, 195435 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Ludovico, M.F., Arrachea, L., Moskalets, M., Sanchez, D.: Periodic energy transport and entropy production in quantum electronics. Entropy 18, 419 (2016). (and references therein)ADSCrossRefGoogle Scholar
  19. 19.
    Bustos-Marún, R., Refael, G., von Oppen, F.: Adiabatic quantum motors. Phys. Rev. Lett. 111, 060802 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    Ludovico, M.F., Battista, F., von Oppen, F., Arrachea, L.: Adiabatic response and quantum thermoelectrics for AC-driven quantum systems. Phys. Rev. B 93, 075136 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    Ludovico, M.F., Capone, M.: Enhanced performance of a quantum-dot-based nanomotor due to Coulomb interactions. arXiv:1808.10780
  22. 22.
    Jauho, A.-P., Wingreen, N.S., Meir, Y.: Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys. Rev. B 50, 5528 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    Blume, M.: Stochastic theory of line shape: generalization of the Kubo-Anderson model. Phys. Rev. 174, 351 (1968)ADSCrossRefGoogle Scholar
  24. 24.
    Klauder, J.R., Anderson, P.W.: Spectral diffusion decay in spin resonance experiments. Phys. Rev. 125, 912 (1962)ADSCrossRefGoogle Scholar
  25. 25.
    Entin-Wohlman, O., Imry, Y., Aharony, A.: Three-terminal thermoelectric transport through a molecular junction. Phys. Rev. B 82, 115314 (2010). (and references therein)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsBen Gurion University of the NegevBeer ShevaIsrael
  2. 2.Raymond and Beverly Sackler School of Physics and AstronomyTel Aviv UniversityTel AvivIsrael
  3. 3.Bose InstituteKolkataIndia

Personalised recommendations