Advertisement

An Analytical Study of Fractional Klein–Kramers Approximations for Describing Anomalous Diffusion of Energetic Particles

  • Ashraf M. Tawfik
  • Horst Fichtner
  • A. Elhanbaly
  • Reinhard Schlickeiser
Article
  • 33 Downloads

Abstract

In this article, anomalous transport models of energetic particles in space plasmas are developed by deriving the fractional force-less Fokker–Planck equation and the fractional diffusion-advection equation from the Klein–Kramers equation. Analytical solutions of the space-time fractional equations are obtained by use of the Caputo and the Riesz fractional derivatives with the Laplace–Fourier technique. The solutions are given in terms of Fox’s H-function and the profiles of the particles densities are discussed in each case for different values of fractional orders.

Keywords

Fractional calculus Anomalous diffusion Energetic particles 

References

  1. 1.
    Crank, J.: The Mathematics of Diffusion. Oxford University Press, Oxford (1979)zbMATHGoogle Scholar
  2. 2.
    Kazakevičius, R., Ruseckas, J.: Anomalous diffusion in nonhomogeneous media: power spectral density of signals generated by time-subordinated nonlinear langevin equations. Physica A 438, 210–222 (2015)ADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    Klages, R., Radons, G., Sokolov, I.M.: Anomalous Transport: Foundations and Applications. Wiley, New York (2008)Google Scholar
  4. 4.
    Compte, A.: Continuous time random walks on moving fluids. Phys. Rev. E 55(6), 6821 (1997)ADSGoogle Scholar
  5. 5.
    Uchaikin, V.V.: Anomalous transport equations and their application to fractal walking. Physica A 255(1), 65–92 (1998)ADSMathSciNetGoogle Scholar
  6. 6.
    Li, Y., Farrher, G., Kimmich, R.: Sub-and superdiffusive molecular displacement laws in disordered porous media probed by nuclear magnetic resonance. Phys. Rev. E 74(6), 066309 (2006)ADSGoogle Scholar
  7. 7.
    Goychuk, I.: Fractional-time random walk subdiffusion and anomalous transport with finite mean residence times: faster, not slower. Phys. Rev. E 86(2), 021113 (2012)ADSMathSciNetGoogle Scholar
  8. 8.
    Metzler, R., Jeon, J.-H., Cherstvy, A.G., Barkai, E.: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16(44), 24128–24164 (2014)Google Scholar
  9. 9.
    Anderson, J., Kim, E., Moradi, S.: A fractional Fokker-Planck model for anomalous diffusion. Phys. Plasmas 21(12), 122109 (2014)ADSGoogle Scholar
  10. 10.
    Peseckis, F.E.: Statistical dynamics of stable processes. Phys. Rev. A 36(2), 892 (1987)ADSGoogle Scholar
  11. 11.
    Le Roux, J.A., Webb, G.M., Shalchi, A., Zank, G.P.: A generalized nonlinear guiding center theory for the collisionless anomalous perpendicular diffusion of cosmic rays. Astrophys. J. 716(1), 671 (2010)ADSGoogle Scholar
  12. 12.
    Shalchi, A., Kourakis, I.: A new theory for perpendicular transport of cosmic rays. Astron. Astrophys. 470(2), 405–409 (2007)ADSzbMATHGoogle Scholar
  13. 13.
    Perri, S., Zimbardo, G.: Evidence of superdiffusive transport of electrons accelerated at interplanetary shocks. Astrophys. J. Lett. 671(2), L177 (2007)ADSGoogle Scholar
  14. 14.
    Perri, S., Zimbardo, G.: Superdiffusive transport of electrons accelerated at corotating interaction regions. J. Geophys. Res. 113(A3) (2008)Google Scholar
  15. 15.
    Sugiyama, T., Shiota, D.: Sign for super-diffusive transport of energetic ions associated with a coronal-mass-ejection-driven interplanetary shock. Astrophys. J. Lett. 731(2), L34 (2011)ADSGoogle Scholar
  16. 16.
    Zimbardo, G., Amato, E., Bovet, A., Effenberger, F., Fasoli, A., Fichtner, H., Furno, I., Gustafson, K., Ricci, P., Perri, S.: Superdiffusive transport in laboratory and astrophysical plasmas. J. Plasma Phys. 81(06), 495810601 (2015)Google Scholar
  17. 17.
    Zimbardo, G., Pommois, P., Veltri, P.: Superdiffusive and subdiffusive transport of energetic particles in solar wind anisotropic magnetic turbulence. Astrophys. J. Lett. 639(2), L91 (2006)ADSGoogle Scholar
  18. 18.
    Trotta, E.M., Zimbardo, G.: Quasi-ballistic and superdiffusive transport for impulsive solar particle events. Astron. Astrophys. 530, A130 (2011)ADSGoogle Scholar
  19. 19.
    Perri, S., Zimbardo, G.: Superdiffusive shock acceleration. Astrophys. J. 750(2), 87 (2012)ADSGoogle Scholar
  20. 20.
    Zimbardo, G., Perri, S.: From Lévy walks to superdiffusive shock acceleration. Astrophys. J. 778(1), 35 (2013)ADSGoogle Scholar
  21. 21.
    Stern, R., Effenberger, F., Fichtner, H., Schäfer, T.: The space-fractional diffusion-advection equation: analytical solutions and critical assessment of numerical solutions. Fract. Calc. Appl. Anal. 17(1), 171–190 (2014)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Tawfik, A.M., Fichtner, H., Schlickeiser, R., Elhanbaly, A.: Analytical solutions of the space–time fractional telegraph and advection–diffusion equations. Physica A 491, 810–819 (2018)ADSMathSciNetGoogle Scholar
  23. 23.
    Tawfik, A.M., Fichtner, H., Elhanbaly, A., Schlickeiser, R.: Analytical solution of the space–time fractional hyperdiffusion equation. Physica A 510, 178–187 (2018)ADSMathSciNetGoogle Scholar
  24. 24.
    Tawfik, A.M., Fichtner, H., Schlickeiser, R., Elhanbaly, A.: Analytical study of fractional equations describing anomalous diffusion of energetic particles. In: Journal of Physics: Conference Series, vol. 869, p. 012050. IOP Publishing, Bristol (2017)Google Scholar
  25. 25.
    Barkai, E.: Stable equilibrium based on Lévy statistics: stochastic collision models approach. Phys. Rev. E 68(5), 055104 (2003)ADSGoogle Scholar
  26. 26.
    Moradi, S., Anderson, J., Weyssow, B.: A theory of non-local linear drift wave transport. Phys. Plasmas 18(6), 062106 (2011)ADSGoogle Scholar
  27. 27.
    Moradi, S., Anderson, J.: Non-local gyrokinetic model of linear ion-temperature-gradient modes. Phys. Plasmas 19(8), 082307 (2012)ADSGoogle Scholar
  28. 28.
    Litvinenko, Y.E., Effenberger, F.: Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport. Astrophys. J. 796(2), 125 (2014)ADSGoogle Scholar
  29. 29.
    Risken, H.: The Fokker-Planck Equation. Springer Series in Synergetics, vol. 18. Springer, Berlin (1989)zbMATHGoogle Scholar
  30. 30.
    Van Kampen, N.G.: Stochastic processes in chemistry and physics. Amsterdam 1, 120–127 (1981)zbMATHGoogle Scholar
  31. 31.
    Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Geophys. J. Int. 13(5), 529–539 (1967)ADSGoogle Scholar
  32. 32.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)zbMATHGoogle Scholar
  33. 33.
    Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic Press, Cambridge (1998)zbMATHGoogle Scholar
  34. 34.
    Metzler, R., Klafter, J., McClintock, P.V.E., Broomhead, D.S, Mullin, T., Luchinskaya, E.A: From the Langevin equation to the fractional Fokker-Planck equation. In: AIP Conference Proceedings, vol. 502, pp. 375–380. AIP (2000)Google Scholar
  35. 35.
    Metzler, R., Klafter, J.: Subdiffusive transport close to thermal equilibrium: from the Langevin equation to fractional diffusion. Phys. Rev. E 61(6), 6308 (2000)ADSGoogle Scholar
  36. 36.
    Fa, K.S., Wang, K.G.: Generalized Klein-Kramers equation: solution and application. J. Stat. Mech. 2013(09), P09021 (2013)MathSciNetGoogle Scholar
  37. 37.
    Metzler, R.: Fractional Klein-Kramers equations: subdiffusive and superdiffusive cases. In: Recent Advances in Broadband Dielectric Spectroscopy, pp. 179–194. Springer, Berlin (2013)Google Scholar
  38. 38.
    Metzler, R., Klafter, J.: From a generalized Chapman–Kolmogorov equation to the fractional klein- kramers equation. J. Phys. Chem. B 104(16), 3851–3857 (2000)Google Scholar
  39. 39.
    Davies, R.W.: The connection between the Smoluchowski equation and the Kramers-Chandrasekhar equation. Phys. Rev. 93(6), 1169 (1954)ADSMathSciNetzbMATHGoogle Scholar
  40. 40.
    Barkai, E., Silbey, R.J.: Fractional Kramers equation. J. Phys. Chem. B 104(16), 3866–3874 (2000)Google Scholar
  41. 41.
    Metzler, R., Sokolov, I.M.: Superdiffusive Klein-Kramers equation: normal and ano malous time evolution and Lévy walk moments. EPL (Europhys. Lett.) 58(4), 482 (2002)ADSGoogle Scholar
  42. 42.
    Murio, D.A.: Time fractional IHCP with Caputo fractional derivatives. Comput. Math. Appl. 56(9), 2371–2381 (2008)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014)zbMATHGoogle Scholar
  44. 44.
    Glöckle, W.G., Nonnenmacher, T.F.: Fractional relaxation and the time-temperature superposition principle. Rheologica Acta 33(4), 337–343 (1994)Google Scholar
  45. 45.
    Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)ADSMathSciNetzbMATHGoogle Scholar
  46. 46.
    Saichev, A.I., Zaslavsky, G.M.: Fractional kinetic equations: solutions and applications. Chaos 7(4), 753–764 (1997)ADSMathSciNetzbMATHGoogle Scholar
  47. 47.
    Srivastava, H.M., Gupta, K.C., Goyal, S.P.: The H-Functions of One and Two Variables, with Applications. South Asian Publishers, New Delhi (1982)zbMATHGoogle Scholar
  48. 48.
    Artmann, S., Schlickeiser, R., Agueda, N., Krucker, S., Lin, R.P.: A diffusive description of the focused transport of solar energetic particles-intensity-and anisotropy-time profiles as a powerful diagnostic tool for interplanetary particle transport conditions. Astron. Astrophys. 535, A92 (2011)ADSGoogle Scholar
  49. 49.
    Metzler, R., Barkai, E., Klafter, J.: Anomalous diffusion and relaxation close to thermal equilibrium: a fractional fokker-planck equation approach. Phys. Rev. Lett. 82(18), 3563 (1999)ADSGoogle Scholar
  50. 50.
    Metzler, R.: Generalized Chapman-Kolmogorov equation: a unifying approach to the description of anomalous transport in external fields. Phys. Rev. E 62(5), 6233 (2000)ADSMathSciNetGoogle Scholar
  51. 51.
    Effenberger, F., Litvinenko, Y.E.: The diffusion approximation versus the telegraph equation for modeling solar energetic particle transport with adiabatic focusing. I. isotropic pitch-angle scattering. Astrophys. J. 783(1), 15 (2014)ADSGoogle Scholar
  52. 52.
    Effenberger, F.: Energetic particle transport with stochastic differential equations: general methods and the extension to anomalous diffusion regimes. In: 8th International Conference of Numerical Modeling of Space Plasma Flows (ASTRONUM 2013), vol. 488 (2014)Google Scholar
  53. 53.
    Tawfik, A.M., Fichtner, H., Elhanbaly, A., Schlickeiser, R.: General solution of a fractional Parker diffusion-convection equation describing the superdiffusive transport of energetic particles. Eur. Phys. J. Plus 133(6), 209 (2018)Google Scholar
  54. 54.
    Mathai, A.M., Saxena, R.K., Haubold, H.J.: The H-Function: Theory and Applications. Springer, New York (2009)zbMATHGoogle Scholar
  55. 55.
    Qi, H., Jiang, X.: Solutions of the space-time fractional Cattaneo diffusion equation. Physica A 390(11), 1876–1883 (2011)ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ashraf M. Tawfik
    • 1
    • 2
  • Horst Fichtner
    • 1
  • A. Elhanbaly
    • 2
  • Reinhard Schlickeiser
    • 1
  1. 1.Institut für Theoretische Physik IV, Ruhr-Universität BochumBochumGermany
  2. 2.Theoretical Physics Research GroupMansoura UniversityMansouraEgypt

Personalised recommendations