Advertisement

Journal of Statistical Physics

, Volume 174, Issue 3, pp 715–733 | Cite as

Methodological and Computational Aspects of Parallel Tempering Methods in the Infinite Swapping Limit

  • Jianfeng LuEmail author
  • Eric Vanden-Eijnden
Article
  • 113 Downloads

Abstract

A variant of the parallel tempering method is proposed in terms of a stochastic switching process for the coupled dynamics of replica configuration and temperature permutation. This formulation is shown to facilitate the analysis of the convergence properties of parallel tempering by large deviation theory, which indicates that the method should be operated in the infinite swapping limit to maximize sampling efficiency. The effective equation for the replica alone that arises in this infinite swapping limit simply involves replacing the original potential by a mixture potential. The analysis of the geometric properties of this potential offers a new perspective on the issues of how to choose of temperature ladder, and why many temperatures should typically be introduced to boost the sampling efficiency. It is also shown how to simulate the effective equation in this many temperature regime using multiscale integrators. Finally, similar ideas are also used to discuss extensions of the infinite swapping limits to the technique of simulated tempering.

Keywords

Parallel tempering Sampling Infinite swapping limit Multiscale integrator 

Notes

Acknowledgements

We thank C. Abrams, B. Leimkuhler, and A. Martinsson for interesting discussions. The work of JL is supported in part by the National Science Foundation (NSF) under Grant DMS-1454939. The work of EVE is supported in part by the Materials Research Science and Engineering Center (MRSEC) program of the NSF under Award Number DMR-1420073 and by NSF under Award Number DMS-1522767.

References

  1. 1.
    Billoire, A., Fernandez, L.A., Maiorano, A., Marinari, E., Martin-Mayor, V., Moreno-Gordo, J., Parisi, G., Ricci-Tersenghi, F., Ruiz-Lorenzo, J.J.: Dynamic variational study of chaos: spin glasses in three dimensions. J. Stat. Mech. 2018, 033302 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Doll, J.D., Dupuis, Paul: On performance measures for infinite swapping Monte Carlo methods. J. Chem. Phys. 142, 024111 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time. I. Commun. Pure. Appl. Math. 28, 1–47 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dupuis, P., Liu, Y.: On the large deviation rate function for the empirical measures of reversible jump Markov processes. Ann. Probab. 43, 1121–1156 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dupuis, Paul, Liu, Yufei, Plattner, Nuria, Doll, J.D.: On the infinite swapping limit for parallel tempering. Multiscale Model. Simul. 10(3), 986–1022 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    E, W., Engquist, B.: The heterogeneous multi-scale methods. Commun. Math. Sci. 1, 87–133 (2003)Google Scholar
  7. 7.
    E, W., Liu, D., Vanden-Eijnden, E.: Analysis of multiscale methods for stochastic differential equations. Commun. Pure Appl. Math. 58, 1544–1585 (2005)Google Scholar
  8. 8.
    E, W., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: The heterogeneous multiscale method: a review. Commun. Comput. Phys. 2(3), 367–450 (2007)Google Scholar
  9. 9.
    Fernandez, L.A., Martin-Mayor, V., Seoane, B.: Temperature chaos in 3D Ising spin glasses is driven by rare events. EPL 103, 67003 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Geyer, C.J.: Markov chain Monte Carlo maximum likelihood, Computing science and statistics: Proc. 23rd symposium on the interface, pp. 156–163 (1991)Google Scholar
  11. 11.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  12. 12.
    Hukushima, K., Nemoto, K.: Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn. 65, 1604–1608 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    Katzgraber, H.G., Trebst, S., Huse, D.A., Troyer, M.: Feedback-optimized parallel tempering Monte Carlo. J. Stat. Mech. 2006, 03018 (2006)CrossRefGoogle Scholar
  14. 14.
    Lu, J., Spiliopoulos, K.: Analysis of multiscale integrators for multiple attractors and irreversible Langevin samplers. Multiscale Model. Simul. 16(4), 1859–1883 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lu, J., Vanden-Eijnden, E.: Infinite swapping replica exchange molecular dynamics leads to a simple simulation patch using mixture potentials. J. Chem. Phys. 138(8), 084105 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Marinari, E., Parisi, G.: Simulated tempering: a new Monte Carlo scheme. Eur. Lett. 19, 451–458 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    Marinari, E., Parisi, G., Ruiz-Lorenzo, J.J.: Numerical simulations of spin glass systems. In: Young, A.P. (ed.) Spin Glasses and Random Fields, pp. 59–98. World Scientific, Paris (1998)Google Scholar
  18. 18.
    Neuhaus, T., Magiera, M.P., Hansmann, U.H.E.: Efficient parallel tempering for first-order phase transitions. Phys. Rev. E 76, 045701 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    Plattner, N., Doll, J.D., Dupuis, P., Wang, H., Liu, Y., Gubernatis, J.E.: An infinite swapping approach to the rare-event sampling problem. J. Chem. Phys. 135(13), 134111 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    Rosta, E., Hummer, G.: Error and efficiency of replica exchange molecular dynamics simulations. J. Chem. Phys. 131(16), 165102 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Sindhikara, D., Meng, Y., Roitberg, A.E.: Exchange frequency in replica exchange molecular dynamics. J. Chem. Phys. 128(2), 0–10 (2008)CrossRefGoogle Scholar
  22. 22.
    Sindhikara, D.J., Emerson, D.J., Roitberg, A.E.: Exchange often and properly in replica exchange molecular dynamics. J. Chem. Theory Comput. 6(9), 2804–2808 (2010)CrossRefGoogle Scholar
  23. 23.
    Sugita, Y., Okamoto, Y.: Replica exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314(November), 141–151 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    Swendsen, R.H., Wang, J.-S.: Replica Monte Carlo simulation of spin-glasses. Phys. Rev. Lett. 57, 2607–2610 (1986)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Tao, M., Owhadi, H., Marsden, J.E.: Nonintrusive and structure presering multiscale integration of stiff ODEs, SDEs, and Hamiltonian systems with hidden slow dynamics via flow averaging. Multiscale Model. Simul. 8, 1269–1324 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Vanden-Eijnden, E.: Numerical techniques for multiscale dynamical systems with stochastic effects. Commun. Math. Sci. 1, 385–391 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Vanden-Eijnden, E.: On HMM-like integrators and projective integration methods for systems with multiple time scales. Commun. Math. Sci. 5, 495–505 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Yu, T.-Q., Lu, J., Abrams, C.F., Vanden-Eijnden, E.: Multiscale implementation of infiniteswap replica exchange molecular dynamics. Proc. Natl. Acad. Sci. USA 113, 11744–11749 (2016)CrossRefGoogle Scholar
  29. 29.
    Zhang, C., Ma, J.: Comparison of sampling efficiency between simulated tempering and replica exchange. J. Chem. Phys. 129, 134112 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Department of Physics, and Department of ChemistryDuke UniversityDurhamUSA
  2. 2.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations