Advertisement

The Ising Partition Function: Zeros and Deterministic Approximation

  • Jingcheng Liu
  • Alistair Sinclair
  • Piyush Srivastava
Article

Abstract

We study the problem of approximating the partition function of the ferromagnetic Ising model with both pairwise as well as higher order interactions (equivalently, in graphs as well as hypergraphs). Our approach is based on the classical Lee–Yang theory of phase transitions, along with a new Lee–Yang theorem for the Ising model with higher order interactions, and on an extension of ideas developed recently by Barvinok, and Patel and Regts that can be seen as an algorithmic realization of the Lee–Yang theory. Our first result is a deterministic polynomial time approximation scheme (an FPTAS) for the partition function in bounded degree graphs that is valid over the entire range of parameters \(\beta \) (the interaction) and \(\lambda \) (the external field), except for the case \(\left| \lambda \right| =1\) (the “zero-field” case). A polynomial time randomized approximation scheme (FPRAS) for all graphs and all \(\beta ,\lambda \), based on Markov chain Monte Carlo simulation, has long been known. Unlike most other deterministic approximation algorithms for problems in statistical physics and counting, our algorithm does not rely on the “decay of correlations” property, but, as pointed out above, on Lee–Yang theory. This approach extends to the more general setting of the Ising model on hypergraphs of bounded degree and edge size, where no previous algorithms (even randomized) were known for a wide range of parameters. In order to achieve this latter extension, we establish a tight version of the Lee–Yang theorem for the Ising model on hypergraphs, improving a classical result of Suzuki and Fisher.

Keywords

Lee–Yang theorems Ising model Partition functions Higher-order interactions 

Notes

Acknowledgements

We thank Alexander Barvinok, Guus Regts and anonymous reviewers for helpful comments.

References

  1. 1.
    Anari, N., Gharan, S.O.: The Kadison–Singer problem for strongly Rayleigh measures and applications to Asymmetric TSP. In: Proceedings of the 56th IEEE Symposium on Foundations of Computer Science (FOCS) (2015)Google Scholar
  2. 2.
    Anari, N., Gharan, S.O.: A generalization of permanent inequalities and applications in counting and optimization. In: Proceedings of the 49th ACM Symposium on Theory and Computation (STOC), pp. 384–396. arXiv:1702.02937 (2017)
  3. 3.
    Asano, T.: Lee–Yang theorem and the Griffiths inequality for the anisotropic Heisenberg ferromagnet. Phys. Rev. Let. 24(25), 1409–1411 (1970).  https://doi.org/10.1103/PhysRevLett.24.1409 ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Barata, J.C.A., Goldbaum, P.S.: On the distribution and gap structure of Lee–Yang zeros for the Ising model: periodic and aperiodic couplings. J. Stat. Phys. 103(5–6), 857–891 (2001).  https://doi.org/10.1023/A:1010332500031 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Barata, J.C.A., Marchetti, D.H.U.: Griffiths’ singularities in diluted Ising models on the Cayley tree. J. Stat. Phys. 88(1–2), 231–268 (1997).  https://doi.org/10.1007/BF02508471 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Barvinok, A.: Computing the partition function for cliques in a graph. Theory Comput. 11(13), 339–355 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Barvinok, A.: Computing the permanent of (some) complex matrices. Found. Comput. Math. 16(2), 329–342 (2015).  https://doi.org/10.1007/s10208-014-9243-7 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Barvinok, A.: Combinatorics and Complexity of Partition Functions. Springer, New York (2016)CrossRefGoogle Scholar
  9. 9.
    Barvinok, A., Soberón, P.: Computing the partition function for graph homomorphisms with multiplicities. J. Combin. Theory Ser. A 137, 1–26 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Barvinok, A., Soberón, P.: Computing the partition function for graph homomorphisms. Combinatorica 37(4), 633–650 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Berger, N., Kenyon, C., Mossel, E., Peres, Y.: Glauber dynamics on trees and hyperbolic graphs. Probab. Theory Relat. Fields 131(3), 311–340 (2005).  https://doi.org/10.1007/s00440-004-0369-4 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Borcea, J., Brändén, P.: The Lee–Yang and Pólya–Schur programs. I. Linear operators preserving stability. Invent. Math. 177(3), 541–569 (2009)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Borcea, J., Brändén, P.: The Lee–Yang and Pólya–Schur programs. II. Theory of stable polynomials and applications. Commun. Pure Appl. Math. 62(12), 1595–1631 (2009)CrossRefGoogle Scholar
  14. 14.
    Borcea, J., Brändén, P., Liggett, T.: Negative dependence and the geometry of polynomials. J. AMS 22(2), 521–567 (2009)ADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Borgs, C., Chayes, J., Kahn, J., Lovász, L.: Left and right convergence of graphs with bounded degree. Random Struct. Algorithms 42(1), 1–28 (2013).  https://doi.org/10.1002/rsa.20414 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Cai, J.Y., Chen, X., Lu, P.: Graph homomorphisms with complex values: a dichotomy theorem. In: Proceedings of the ICALP, Lecture Notes in Computer Science, vol. 6198, pp. 275–286. Springer. http://www.springerlink.com/content/46275700132p5250/abstract/ (2010)
  17. 17.
    Csikvári, P., Frenkel, P.E.: Benjamini–Schramm continuity of root moments of graph polynomials. Eur. J. Combin. 52, 302–320 (2016)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Efthymiou, C., Hayes, T.P., Štefankovic, D., Vigoda, E., Yin, Y.: Convergence of MCMC and loopy BP in the tree uniqueness region for the hard-core model. In: Proceedings of the 57th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 704–713 (2016)Google Scholar
  19. 19.
    Galanis, A., Goldberg, L.A.: The complexity of approximately counting in 2-spin systems on \(k\)-uniform bounded-degree hypergraphs. Inf. Comput. 251, 36–66 (2016).  https://doi.org/10.1016/j.ic.2016.07.003. http://www.sciencedirect.com/science/article/pii/S0890540116300426
  20. 20.
    Galanis, A., Ge, Q., Štefankovič, D., Vigoda, E., Yang, L.: Improved inapproximability results for counting independent sets in the hard-core model. Random Struct. Algorithms 45(1), 78–110 (2014).  https://doi.org/10.1002/rsa.20479 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Goldberg, L.A., Jerrum, M.: Inapproximability of the Tutte polynomial. Inf. Comput. 206(7), 908–929 (2008).  https://doi.org/10.1016/j.ic.2008.04.003. http://www.sciencedirect.com/science/article/pii/S089054010800031X
  22. 22.
    Goldberg, L.A., Grohe, M., Jerrum, M., Thurley, M.: A complexity dichotomy for partition functions with mixed signs. SIAM J. Comput. 39(7), 3336–3402 (2010).  https://doi.org/10.1137/090757496 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Goldberg, L.A., Jerrum, M., Paterson, M.: The computational complexity of two-state spin systems. Random Struct. Algorithms 23(2), 133–154 (2003)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Guo, H., Jerrum, M.: Random cluster dynamics for the Ising model is rapidly mixing. In: Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1818–1827 (2017)Google Scholar
  25. 25.
    Guo, H., Lu, P.: Uniqueness, spatial mixing, and approximation for ferromagnetic 2-spin systems. In: Proceedings of the APPROX/RANDOM (2016)Google Scholar
  26. 26.
    Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253–258 (1925).  https://doi.org/10.1007/BF02980577 ADSCrossRefGoogle Scholar
  27. 27.
    Jerrum, M., Sinclair, A.: Approximating the permanent. SIAM J. Comput. 18(6), 1149–1178 (1989).  https://doi.org/10.1137/0218077 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Jerrum, M., Sinclair, A.: Polynomial-time approximation algorithms for the Ising model. SIAM J. Comput. 22(5), 1087–1116 (1993)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Jerrum, M., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial structures from a uniform distribution. Theor. Comput. Sci. 43, 169–188 (1986)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lee, T.D., Yang, C.N.: Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev. 87(3), 410–419 (1952).  https://doi.org/10.1103/PhysRev.87.410 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Li, L., Lu, P., Yin, Y.: Correlation decay up to uniqueness in spin systems. In: Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 67–84 (2013)Google Scholar
  32. 32.
    Long, Y., Nachmias, A., Ning, W., Peres, Y.: A power law of order 1/4 for critical mean-field Swendsen–Wang dynamics. AMS MEMO/232/1092 (2014)Google Scholar
  33. 33.
    Lu, P., Yang, K., Zhang, C.: FPTAS for hardcore and Ising models on hypergraphs. In: Proceedings of the 33rd Symposium on Theoretical Aspects of Computer Science (STACS), pp. 51:1–51:14 (2016)Google Scholar
  34. 34.
    Lubetzky, E., Sly, A.: Critical Ising on the square lattice mixes in polynomial time. Commun. Math. Phys. 313(3), 815–836 (2012).  https://doi.org/10.1007/s00220-012-1460-9 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Luby, M., Vigoda, E.: Approximately counting up to four. In: Proceedings of the 29th ACM Symposium on Theory of Computing, pp. 682–687.  https://doi.org/10.1145/258533.258663 (1997)
  36. 36.
    Marcus, A., Spielman, D., Srivastava, N.: Interlacing families I: Bipartite Ramanujan graphs of all degrees. Ann. Math. (2015)  https://doi.org/10.4007/annals.2015.182.1.7. http://annals.math.princeton.edu/2015/182-1/p07
  37. 37.
    Marcus, A.W., Spielman, D.A., Srivastava, N.: Interlacing families II: Mixed characteristic polynomials and the Kadison–Singer problem. Ann. Math. 182, 327–350 (2015)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Martinelli, F., Olivieri, E.: Approach to equilibrium of Glauber dynamics in the one phase region. I. The attractive case. Commun. Math. Phys. 161(3), 447–486 (1994)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Martinelli, F., Olivieri, E.: Approach to equilibrium of Glauber dynamics in the one phase region: II. The general case. Commun. Math. Phys. 161, 487–514 (1994)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Martinelli, F., Sinclair, A., Weitz, D.: Glauber dynamics on trees: Boundary conditions and mixing time. Commun. Math. Phys. 250(2), 301–334 (2004).  https://doi.org/10.1007/s00220-004-1147-y ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Mossel, E., Sly, A.: Exact thresholds for Ising–Gibbs samplers on general graphs. Ann. Probab. 41(1), 294–328 (2013)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Patel, V., Regts, G.: Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials. SIAM J. Comput. 46(6), 1893–1919 (2017). arXiv:1607.01167 MathSciNetCrossRefGoogle Scholar
  43. 43.
    Randall, D., Wilson, D.: Sampling spin configurations of an Ising system. In: Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 959–960 (1999)Google Scholar
  44. 44.
    Ruelle, D.: Characterization of Lee-Yang polynomials. Ann. Math. 171(1), 589–603 (2010).  https://doi.org/10.4007/annals.2010.171.589. http://annals.math.princeton.edu/2010/171-1/p16
  45. 45.
    Scott, A., Sokal, A.: The repulsive lattice gas, the independent-set polynomial, and the Lovász local lemma. J. Stat. Phys. 118(5–6), 1151–1261 (2004)ADSzbMATHGoogle Scholar
  46. 46.
    Shearer, J.B.: On a problem of Spencer. Combinatorica 5(3), 241–245 (1985)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Sinclair, A., Srivastava, P.: Lee–Yang theorems and the complexity of computing averages. Commun. Math. Phys. 329(3), 827–858 (2014)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Sinclair, A., Srivastava, P., Thurley, M.: Approximation algorithms for two-state anti-ferromagnetic spin systems on bounded degree graphs. J. Stat. Phys. 155(4), 666–686 (2014)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Sinclair, A., Srivastava, P., Štefankovič, D., Yin, Y.: Spatial mixing and the connective constant: optimal bounds. Probab. Theory Relat. Fields 168, 153–197 (2016)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Sly, A., Sun, N.: Counting in two-spin models on \(d\)-regular graphs. Ann. Probab. 42(6), 2383–2416 (2014).  https://doi.org/10.1214/13-AOP888. http://projecteuclid.org/euclid.aop/1412083628
  51. 51.
    Song, R., Yin, Y., Zhao, J.: Counting hypergraph matchings up to uniqueness threshold. In: Proceedings of the APPROX/RANDOM, pp. 46:1–46:29 (2016)Google Scholar
  52. 52.
    Stanley, R., Fomin, S.: Enumerative Combinatorics. Cambridge University Press, Cambridge (1999)CrossRefGoogle Scholar
  53. 53.
    Straszak, D., Vishnoi, N.K.: Real stable polynomials and matroids: optimization and counting. In: Proceedings of the 49th ACM Symposium on Theory of Computing (STOC), pp. 370–383. arXiv:1611.04548 (2017)
  54. 54.
    Suzuki, M., Fisher, M.E.: Zeros of the partition function for the Heisenberg, Ferroelectric, and general Ising models. J. Math. Phys. 12(2), 235–246 (1971).  https://doi.org/10.1063/1.1665583. http://scitation.aip.org/content/aip/journal/jmp/12/2/10.1063/1.1665583;jsessionid=tsaFQsrLOe4npdBWQR-8iADE.x-aip-live-06
  55. 55.
    Weitz, D.: Counting independent sets up to the tree threshold. In: Proceedings of the 38th ACM Symposium on Theory of Computing (STOC), pp. 140–149 (2006)Google Scholar
  56. 56.
    Yang, C.N., Lee, T.D.: Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev. 87(3), 404–409 (1952).  https://doi.org/10.1103/PhysRev.87.404 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Zhang, J., Liang, H., Bai, F.: Approximating partition functions of the two-state spin system. Inf. Process. Lett. 111(14), 702–710 (2011).  https://doi.org/10.1016/j.ipl.2011.04.012 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jingcheng Liu
    • 1
  • Alistair Sinclair
    • 1
  • Piyush Srivastava
    • 2
  1. 1.Computer Science DivisionUC BerkeleyBerkeleyUSA
  2. 2.Tata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations