Advertisement

Long-Range Order, “Tower” of States, and Symmetry Breaking in Lattice Quantum Systems

  • Hal TasakiEmail author
Article
  • 27 Downloads

Abstract

In a quantum many-body system where the Hamiltonian and the order operator do not commute, it often happens that the unique ground state of a finite system exhibits long-range order (LRO) but does not show spontaneous symmetry breaking (SSB). Typical examples include antiferromagnetic quantum spin systems with Néel order, and lattice boson systems which exhibits Bose–Einstein condensation. By extending and improving previous results by Horsch and von der Linden and by Koma and Tasaki, we here develop a fully rigorous and almost complete theory about the relation between LRO and SSB in the ground state of a finite system with continuous symmetry. We show that a ground state with LRO but without SSB is inevitably accompanied by a series of energy eigenstates, known as the “tower” of states, which have extremely low excitation energies. More importantly, we also prove that one gets a physically realistic “ground state” by taking a superposition of these low energy excited states.

Keywords

Long-range order Spontaneous symmetry breaking “Tower of states” Quantum spin systems 

Notes

Acknowledgements

It is a pleasure to thank Hosho Katsura for his essential contribution in the derivation of (4.43), which considerably simplified the proof, and for useful comments. I also thank Tohru Koma and Haruki Watanabe for indispensable discussions and comments which made the present work possible, and Masaki Oshikawa and Masafumi Udagawa for useful discussions. The present work was supported by JSPS Grants-in-Aid for Scientific Research no. 16H02211.

References

  1. 1.
    Dyson, F.J., Lieb, E.H., Simon, B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–382 (1978)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Neves, E.J., Perez, J.F.: Long range order in the ground state of two-dimensional antiferromagnets. Phys. Lett. 114A, 331–333 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    Mazurenko, A., Chiu, C.S., Ji, G., Parsons, M.F., Kanász-Nagy, M., Schmidt, R., Grusdt, F., Demler, E., Greif, D., Greiner, M.: A cold-atom Fermi-Hubbard antiferromagnet. Nature 545, 462–466 (2017). arXiv:1612.08436 ADSCrossRefGoogle Scholar
  4. 4.
    Marshall, W.: Antiferromagnetism. Proc. R. Soc. A 232, 48 (1955)ADSCrossRefGoogle Scholar
  5. 5.
    Lieb, E.H., Mattis, D.: Ordering energy levels in interacting spin chains. J. Math. Phys. 3, 749–751 (1962)ADSCrossRefGoogle Scholar
  6. 6.
    Anderson, P.W.: An approximate quantum theory of the antiferromagnetic ground state. Phys. Rev. 86, 694 (1952)ADSCrossRefGoogle Scholar
  7. 7.
    Anderson, P.W.: Basic Notions of Condensed Matter Physics. Westview Press/Addison-Wesley, Boulder (1997)Google Scholar
  8. 8.
    Gross, M., Sánchez-Velasco, E., Siggia, E.D.: Spin-wave velocity and susceptibility for the two-dimensional Heisenberg antiferromagnet. Phys. Rev. B 40, 11328–1130 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    Kikuchi, M., Okabe, Y., Miyashita, S.: On the ground-state phase transition of the spin 1/2 XXZ model on the square lattice. J. Phys. Soc. Jpn. 59, 492 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    Bernu, B., Lhuillier, C., Pierre, L.: Signature of Néel order in exact spectra of quantum antiferromagnets on finite lattices. Phys. Rev. Lett. 69, 2590–2593 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    Azaria, P., Delamotte, B., Mouhanna, D.: Spontaneous symmetry breaking in quantum frustrated antiferromagnets. Phys. Rev. Lett. 70, 2483–2486 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    Lhuillier, C.: Frustrated Quantum Magnets. Lecture Notes at “Ecole de troisieme cycle de Suisse Romande”. arXiv:cond-mat/0502464 (2002)
  13. 13.
    Horsch, P., von der Linden, W.: Spin-correlations and low lying excited states of the spin-1/2 Heisenberg antiferromagnet on a square lattice. Z. Phys. B 72, 181–193 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    Kaplan, T.A., Horsch, P., von der Linden, W.: Order parameter in quantum antiferromagnets. J. Phys. Soc. Jpn. 11, 3894–3898 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    Koma, T., Tasaki, H.: Symmetry breaking in Heisenberg antiferromagnets. Commun. Math. Phys. 158, 191–214 (1993). https://projecteuclid.org/euclid.cmp/1104254136
  16. 16.
    Koma, T., Tasaki, H.: Symmetry breaking and finite-size effects in quantum many-body systems. J. Stat. Phys. 76, 745–803 (1994). arXiv:cond-mat/9708132 ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008). arXiv:0704.3011 ADSCrossRefGoogle Scholar
  18. 18.
    Tasaki, H.: Physics and mathematics of quantum many-body systems (to be published from Springer)Google Scholar
  19. 19.
    Mattis, D.: Ground-state symmetry in XY model of magnetism. Phys. Rev. Lett. 42, 1503 (1979)ADSCrossRefGoogle Scholar
  20. 20.
    Nishimori, H.: Spin quantum number in the ground state of the Mattis-Heisenberg model. J. Stat. Phys. 26, 839–845 (1981)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Kennedy, T., Lieb, E.H., Shastry, B.S.: Existence of Néel order in some spin-\(1/2\) Heisenberg antiferromagnets. J. Stat. Phys. 53, 1019 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    Kennedy, T., Lieb, E.H., Shastry, B.S.: The XY model has long-range order for all spins and all dimensions greater than one. Phys. Rev. Lett. 61, 2582 (1988)ADSCrossRefGoogle Scholar
  23. 23.
    Kubo, K., Kishi, T.: Existence of long-range order in the XXZ model. Phys. Rev. Lett. 61, 2585 (1988)ADSCrossRefGoogle Scholar
  24. 24.
    Ozeki, Y., Nishimori, H., Tomita, Y.: Long-range order in antiferromagnetic quantum spin systems. J. Phys. Soc. Jpn. 58, 82–90 (1989).  https://doi.org/10.1143/JPSJ.58.82 ADSCrossRefGoogle Scholar
  25. 25.
    Koma, T.: Maximum spontaneous magnetization and Nambu-Goldstone mode. arXiv:1712.09018 (2018) (preprint)
  26. 26.
    Sannomiya, N., Katsura, H., Nakayama, Y.: Supersymmetry breaking and Nambu-Goldstone fermions with cubic dispersion. Phys. Rev. D 95, 065001 (2017). arXiv:1612.02285 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsGakushuin UniversityTokyoJapan

Personalised recommendations