Journal of Statistical Physics

, Volume 174, Issue 3, pp 605–621

# The Phase Diagram for a Multispecies Left-Permeable Asymmetric Exclusion Process

• Arvind Ayyer
• Caley Finn
• Dipankar Roy
Article

## Abstract

We study a multispecies generalization of a left-permeable asymmetric exclusion process (LPASEP) in one dimension with open boundaries. We determine all phases in the phase diagram using an exact projection to the LPASEP solved by us in a previous work. In most phases, we observe the phenomenon of dynamical expulsion of one or more species. We explain the density profiles in each phase using interacting shocks. This explanation is corroborated by simulations.

## Keywords

Asymmetric exclusion process Left-permeable Multispecies Phase diagram Interacting shocks Dynamical expulsion

## Notes

### Acknowledgements

We thank the referees for a number of useful suggestions. The first and third authors are supported by UGC Centre for Advanced Studies (Grant No. F. 510/25/CAS-II/2018(SAP-I)). The first author was also partly supported by Department of Science and Technology Grant EMR/2016/006624.

## References

1. 1.
Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1d asymmetric exclusion model using a matrix formulation. J. Phys. A 26(7), 1493 (1993)
2. 2.
Blythe, R.A., Evans, M.R.: Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. A 40(46), R333 (2007)
3. 3.
Schadschneider, A.: Traffic flow: a statistical physics point of view. Phys. A 313(1), 153–187 (2002). (Fundamental Problems in Statistical Physics)
4. 4.
Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329(4), 199–329 (2000)
5. 5.
Penington, C.J., Hughes, B.D., Landman, K.A.: Building macroscale models from microscale probabilistic models: a general probabilistic approach for nonlinear diffusion and multispecies phenomena. Phys. Rev. E 84, 041120 (2011)
6. 6.
Evans, M.R., Foster, D.P., Godrèche, C., Mukamel, D.: Asymmetric exclusion model with two species: spontaneous symmetry breaking. J. Stat. Phys. 80(1), 69–102 (1995)
7. 7.
Arita, C.: Phase transitions in the two-species totally asymmetric exclusion process with open boundaries. J. Stat. Mech. 2006(12), P12008 (2006)
8. 8.
Uchiyama, M.: Two-species asymmetric simple exclusion process with open boundaries. Chaos Solitons Fractals 35(2), 398–407 (2008)
9. 9.
Ayyer, A., Lebowitz, J.L., Speer, E.R.: On the two species asymmetric exclusion process with semi-permeable boundaries. J. Stat. Phys. 135(5), 1009–1037 (2009)
10. 10.
Ayyer, A., Lebowitz, J.L., Speer, Eugene R.: On some classes of open two-species exclusion processes. Markov Process. Relat. Fields 18(5), 157–176 (2012)
11. 11.
Crampe, N., Mallick, K., Ragoucy, E., Vanicat, M.: Open two-species exclusion processes with integrable boundaries. J. Phys. A 48(17), 175002 (2015)
12. 12.
Crampe, N., Evans, M.R., Mallick, K., Ragoucy, E., Vanicat, M.: Matrix product solution to a 2-species TASEP with open integrable boundaries. J. Phys. A 49(47), 475001 (2016)
13. 13.
Ayyer, A., Finn, C., Roy, D.: Matrix product solution of a left-permeable two-species asymmetric exclusion process. Phys. Rev. E 97, 012151 (2018)
14. 14.
Evans, M.R., Ferrari, P.A., Mallick, K.: Matrix representation of the stationary measure for the multispecies TASEP. J. Stat. Phys. 135(2), 217–239 (2009)
15. 15.
Prolhac, S., Evans, M.R., Mallick, K.: The matrix product solution of the multispecies partially asymmetric exclusion process. J. Phys. A 42(16), 165004 (2009)
16. 16.
Ferrari, P.A., Martin, J.B.: Multi-class processes, dual points and M/M/1 queues. Markov Process. Relat. Fields 12(2), 175–201 (2006)
17. 17.
Ferrari, P.A., Martin, J.B.: Stationary distributions of multi-type totally asymmetric exclusion processes. Ann. Probab. 35(3), 807–832, 05 (2007)
18. 18.
Ayyer, A., Linusson, S.: Correlations in the multispecies TASEP and a conjecture by lam. Trans. Am. Math. Soc. 369(2), 1097–1125 (2017)
19. 19.
Cantini, L., Garbali, A., de Gier, J., Wheeler, M.: Koornwinder polynomials and the stationary multi-species asymmetric exclusion process with open boundaries. J. Phys. A 49(44), 444002 (2016)
20. 20.
Ayyer, A., Roy, D.: The exact phase diagram for a class of open multispecies asymmetric exclusion processes. Sci. Rep. 7, 13555 (2017)
21. 21.
Crampe, N., Finn, C., Ragoucy, E., Vanicat, M.: Integrable boundary conditions for multi-species ASEP. J. Phys. A 49(37), 375201 (2016)
22. 22.
Uchiyama, M., Sasamoto, T., Wadati, M.: Asymmetric simple exclusion process with open boundaries and Askey–Wilson polynomials. J. Phys. A 37(18), 4985 (2004)

## Authors and Affiliations

• Arvind Ayyer
• 1
• Caley Finn
• 2
• Dipankar Roy
• 1
1. 1.Department of MathematicsIndian Institute of ScienceBangaloreIndia
2. 2.Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), School of Mathematics and StatisticsThe University of MelbourneParkvilleAustralia