Journal of Statistical Physics

, Volume 174, Issue 3, pp 605–621 | Cite as

The Phase Diagram for a Multispecies Left-Permeable Asymmetric Exclusion Process

  • Arvind AyyerEmail author
  • Caley Finn
  • Dipankar Roy


We study a multispecies generalization of a left-permeable asymmetric exclusion process (LPASEP) in one dimension with open boundaries. We determine all phases in the phase diagram using an exact projection to the LPASEP solved by us in a previous work. In most phases, we observe the phenomenon of dynamical expulsion of one or more species. We explain the density profiles in each phase using interacting shocks. This explanation is corroborated by simulations.


Asymmetric exclusion process Left-permeable Multispecies Phase diagram Interacting shocks Dynamical expulsion 



We thank the referees for a number of useful suggestions. The first and third authors are supported by UGC Centre for Advanced Studies (Grant No. F. 510/25/CAS-II/2018(SAP-I)). The first author was also partly supported by Department of Science and Technology Grant EMR/2016/006624.


  1. 1.
    Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1d asymmetric exclusion model using a matrix formulation. J. Phys. A 26(7), 1493 (1993)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Blythe, R.A., Evans, M.R.: Nonequilibrium steady states of matrix-product form: a solver’s guide. J. Phys. A 40(46), R333 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Schadschneider, A.: Traffic flow: a statistical physics point of view. Phys. A 313(1), 153–187 (2002). (Fundamental Problems in Statistical Physics)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329(4), 199–329 (2000)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Penington, C.J., Hughes, B.D., Landman, K.A.: Building macroscale models from microscale probabilistic models: a general probabilistic approach for nonlinear diffusion and multispecies phenomena. Phys. Rev. E 84, 041120 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Evans, M.R., Foster, D.P., Godrèche, C., Mukamel, D.: Asymmetric exclusion model with two species: spontaneous symmetry breaking. J. Stat. Phys. 80(1), 69–102 (1995)ADSCrossRefzbMATHGoogle Scholar
  7. 7.
    Arita, C.: Phase transitions in the two-species totally asymmetric exclusion process with open boundaries. J. Stat. Mech. 2006(12), P12008 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Uchiyama, M.: Two-species asymmetric simple exclusion process with open boundaries. Chaos Solitons Fractals 35(2), 398–407 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ayyer, A., Lebowitz, J.L., Speer, E.R.: On the two species asymmetric exclusion process with semi-permeable boundaries. J. Stat. Phys. 135(5), 1009–1037 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ayyer, A., Lebowitz, J.L., Speer, Eugene R.: On some classes of open two-species exclusion processes. Markov Process. Relat. Fields 18(5), 157–176 (2012)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Crampe, N., Mallick, K., Ragoucy, E., Vanicat, M.: Open two-species exclusion processes with integrable boundaries. J. Phys. A 48(17), 175002 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Crampe, N., Evans, M.R., Mallick, K., Ragoucy, E., Vanicat, M.: Matrix product solution to a 2-species TASEP with open integrable boundaries. J. Phys. A 49(47), 475001 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ayyer, A., Finn, C., Roy, D.: Matrix product solution of a left-permeable two-species asymmetric exclusion process. Phys. Rev. E 97, 012151 (2018)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Evans, M.R., Ferrari, P.A., Mallick, K.: Matrix representation of the stationary measure for the multispecies TASEP. J. Stat. Phys. 135(2), 217–239 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Prolhac, S., Evans, M.R., Mallick, K.: The matrix product solution of the multispecies partially asymmetric exclusion process. J. Phys. A 42(16), 165004 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ferrari, P.A., Martin, J.B.: Multi-class processes, dual points and M/M/1 queues. Markov Process. Relat. Fields 12(2), 175–201 (2006)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Ferrari, P.A., Martin, J.B.: Stationary distributions of multi-type totally asymmetric exclusion processes. Ann. Probab. 35(3), 807–832, 05 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ayyer, A., Linusson, S.: Correlations in the multispecies TASEP and a conjecture by lam. Trans. Am. Math. Soc. 369(2), 1097–1125 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Cantini, L., Garbali, A., de Gier, J., Wheeler, M.: Koornwinder polynomials and the stationary multi-species asymmetric exclusion process with open boundaries. J. Phys. A 49(44), 444002 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ayyer, A., Roy, D.: The exact phase diagram for a class of open multispecies asymmetric exclusion processes. Sci. Rep. 7, 13555 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    Crampe, N., Finn, C., Ragoucy, E., Vanicat, M.: Integrable boundary conditions for multi-species ASEP. J. Phys. A 49(37), 375201 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Uchiyama, M., Sasamoto, T., Wadati, M.: Asymmetric simple exclusion process with open boundaries and Askey–Wilson polynomials. J. Phys. A 37(18), 4985 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of ScienceBangaloreIndia
  2. 2.Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers (ACEMS), School of Mathematics and StatisticsThe University of MelbourneParkvilleAustralia

Personalised recommendations