Advertisement

Journal of Statistical Physics

, Volume 174, Issue 3, pp 622–655 | Cite as

Particle and Kinetic Models for Swarming Particles on a Sphere and Stability Properties

  • Seung-Yeal Ha
  • Dohyun Kim
  • Jaeseung Lee
  • Se Eun NohEmail author
Article
  • 75 Downloads

Abstract

We present particle and kinetic models for the description of swarming particles on a sphere in the presence of random noises, and study their stability properties. In the absence of noises, the proposed particle model can be reduced from the Lohe matrix model for quantum synchronization, and the kinetic model can be formally derived from the particle swarming model using the BBGKY hierarchy. For the particle model without noises, we show that it is uniformly stable with respect to initial data in a Lebesgue norm. This uniform stability and particle-in-cell method yield a global existence of a measure-valued solution to the corresponding inviscid kinetic model. We also show that the incoherent state for the kinetic model is nonlinearly stable, as long as the ratio between noise strength and coupling strength is sufficiently large.

Keywords

Emergence Kuramoto model Lohe model Nonlinear stability Swarm model 

Mathematics Subject Classification

92D25 74A25 76N10 

References

  1. 1.
    Acebron, J.A., Bonilla, L.L., Pérez Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    Bolley, F., Cañizo, J.A., Carrillo, J.A.: Mean-field limit for the stochastic Vicsek model. Appl. Math. Lett. 25, 339–343 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Buck, J., Buck, E.: Biology of synchronous flashing of fireflies. Nature 211, 562–564 (1966)ADSCrossRefGoogle Scholar
  4. 4.
    Carrillo, J.A., Choi, Y.-P., Ha, S.-Y., Kang, M.-J., Kim, Y.: Contractivity of transport distances for the kinetic Kuramoto equation. J. Stat. Phys. 156, 395–415 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chi, D., Choi, S.-H., Ha, S.-Y.: Emergent behaviors of a holonomic particle system on a sphere. J. Math. Phys. 55, 052703 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Choi, S.-H., Ha, S.-Y.: Complete entrainment of Lohe oscillators under attractive and repulsive couplings. SIAM J. Appl. Dyn. Syst. 13, 1417–1441 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Choi, Y., Ha, S.-Y., Jung, S., Kim, Y.: Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model. Physica D 241, 735–754 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Choi, Y.-P., Ha, S.-Y. and Li, Z.: Emergent dynamics of the Cucker-Smale flocking model and its variants. In: N. Bellomo, P. Degond, E. Tadmor (Eds.) Active Particles Vol. I: Advances in Theory, Models, and Applications. Series: Modelling and Simulation in Science and Technology, pp. 299–331. Birkhäuser, Basel (2017)Google Scholar
  9. 9.
    Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Autom. Control 52, 852–862 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Degond, P., Motsch, S.: Continuum limit of self-driven particles with orientation interaction. Math. Mod. Methods Appl. Sci. 18, 1193–1215 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Degond, P., Frouvelle, A., Liu, J.-G.: Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics. Arch. Ration. Mech. Anal. 216, 63–115 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Degond, P., Frouvelle, A., Merino-Aceituno, S.: A new flocking model through body attitude coordination. Math. Mod. Methods Appl. Sci. 27, 1005–1049 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dörfler, F., Bullo, F.: Synchronization in complex networks of phase oscillators: a survey. Automatica 50, 1539–1564 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Frouvelle, A., Liu, J.-G.: Dynamics in a kinetic model of oriented particles with phase transition. SIAM J. Math. Anal. 44, 791–826 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gamba, I.M., Kang, M.-J.: Global weak solutions for the Kolmogorov-Vicsek type equations with orientational interactions. Arch. Ration. Mech. Anal. 222, 317–342 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ha, S.-Y., Liu, J.-G.: A simple proof of Cucker-Smale flocking dynamics and mean field limit. Commun. Math. Sci. 7, 297–325 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ha, S.-Y., Ryoo, S.: On the emergence and orbital stability of phase-locked states for the Lohe model. J. Stat. Phys. 163, 411–439 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ha, S.-Y., Tadmor, E.: From particle to kinetic and hydrodynamic description of flocking. Kinet. Relat. Model. 1, 415–435 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ha, S.-Y., Kang, M.-J., Lattanzio, C., Rubino, B.: A class of interacting particle systems on the infinite cylinder with flocking phenomena. Math. Mod. Methods Appl. Sci. 22, 125008 (2012)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Ha, S.-Y., Ko, D., Park, J., Zhang, X.: Collective synchronization of classical and quantum oscillators. EMS Surv. Math. Sci. 3, 209–267 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ha, S.-Y., Ko, D., Ryoo, S.W.: Emergent dynamics of a generalized Lohe model on some class of Lie groups. J. Stat. Phys. 168, 171–207 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ha, S.-Y., Ko, D., Ryoo, S.: On the relaxation dynamics of Lohe oscillators on some Riemannian manifolds. J. Stat. Phys. 1–52 (2018)Google Scholar
  23. 23.
    Ha, S.-Y., Kim, J., Zhang, X.: Uniform stability of the Cucker-Smale model and its application to the mean-field limit. Kinet. Relat. Mod. 11, 1157–1181 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Kuramoto, Y.: International symposium on mathematical problems in mathematical physics. Lect. Notes Theor. Phys. 30, 420 (1975)ADSCrossRefGoogle Scholar
  25. 25.
    Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer, Berlin (1984)CrossRefzbMATHGoogle Scholar
  26. 26.
    Lancellotti, C.: On the Vlasov limit for systems of nonlinearly coupled oscillators without noise. Transp. Theory Stat. Phys. 34, 523–535 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lions, J.L.: Equations différentielles opérationelles et problèmes aux limites. Springer, Berlin (1961)CrossRefzbMATHGoogle Scholar
  28. 28.
    Lohe, M.A.: Non-abelian Kuramoto model and synchronization. J. Phys. A 42, 395101 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lohe, M.A.: Quantum synchronization over quantum networks. J. Phys. A 43, 465301 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Neunzert, H.: An introduction to the nonlinear Boltzmann-Vlasov equations. In: Kinetic Theories and the Boltzmann Equation Lecture Notes in Mathematics, vol. 1048. Springer, Berlin (1984)Google Scholar
  31. 31.
    Olfati-Saber, R.: Swarms on sphere: a programmable swarm with synchronous behaviors like oscillator networks. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 5060–5066 (2006)Google Scholar
  32. 32.
    Park, J., Kim, H., Ha, S.-Y.: Cucker-Smale flocking with inter-particle bonding forces. IEEE Trans. Autom. Control 55, 2617–2623 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Peskin, C.S.: Mathematical Aspects of Heart Physiology. Courant Institute of Mathematical Sciences, New York (1975)zbMATHGoogle Scholar
  34. 34.
    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  35. 35.
    Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes, and Martingales, vol. 2. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
  36. 36.
    Shubin, M.: A: Pseudodifferential Operators and Spectral Theory, 2nd edn. Springer, Berlin (2001)CrossRefzbMATHGoogle Scholar
  37. 37.
    Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Sznitman, A.-S.: Topics in propagation of chaos. In: Ecole d’Eté de Probabilités de Saint-Flour XIX 1989. Lecture Notes in Mathematics, vol. 1464. Springer, New York (1991)Google Scholar
  39. 39.
    Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Villani, C.: Optimal Transport, Old and New. Springer, New York (2008)zbMATHGoogle Scholar
  41. 41.
    Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theor. Biol. 16, 15–42 (1967)CrossRefGoogle Scholar
  42. 42.
    Winfree, A.T.: The Geometry of Biological Time. Springer, New York (1980)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical Sciences and Research Institute of MathematicsSeoul National UniversitySeoulRepublic of Korea
  2. 2.Korea Institute for Advanced StudySeoulRepublic of Korea
  3. 3.Department of Mathematical SciencesSeoul National UniversitySeoulRepublic of Korea
  4. 4.The Research Institute of Basic SciencesSeoul National UniversitySeoulRepublic of Korea
  5. 5.Department of MathematicsMyongji UniversityYong-InRepublic of Korea

Personalised recommendations