Advertisement

Partisan Intuition Belies Strong, Institutional Consensus and Wide Zipf’s Law for Voting Blocs in US Supreme Court

  • Edward D. Lee
Article

Abstract

The US Supreme Court throughout the twentieth century has been characterized as being divided between liberals and conservatives, suggesting that ideologically similar justices would have voted similarly had they overlapped in tenure. What if they had? I build a minimal, pairwise maximum entropy model to infer how 36 justices from 1946–2016 would have all voted on a Super Court. The model is strikingly consistent with a standard voting model from political science, W-Nominate, despite using \(10^5\) less parameters and fitting the observed statistics better. I find that consensus dominates the Super Court and strong correlations in voting span nearly 100 years, defining an emergent institutional timescale that surpasses the tenure of any single justice. Thus, the collective behavior of the Court over time reveals a stable institution insulated from the seemingly rapid pace of political change. Beyond consensus, I discover a rich structure of dissenting blocs with a heavy-tailed, scale-free distribution consistent with data from the Second Rehnquist Court. Consequently, a low-dimensional description of voting with a fixed number of ideological modes is inherently misleading because even votes that defy such a description are probable. Instead of assuming that strong higher order correlations like voting blocs are induced by features of the cases, the institution, and the justices, I show that such complexity can be expressed in a minimal model relying only on pairwise correlations in voting.

Keywords

Maximum entropy Political voting Supreme Court Spin glass 

Notes

Acknowledgements

I thank Paul Ginsparg, Bryan Daniels, Guru Khalsa, and Colin Clement for invaluable feedback, Bill Bialek and Ti-Yen Lan for comments on previous versions of the manuscript, and Veit Elser for encouragement. I acknowledge funding from the NSF Graduate Research Fellowship under Grant DGE-1650441.

Supplementary material

10955_2018_2156_MOESM1_ESM.pdf (572 kb)
Supplementary material 1 (pdf 572 KB)

References

  1. 1.
    Grofman, B., Brazill, T.J.: Identifying the median justice on the supreme court through multidimensional scaling: analysis of ‘natural courts’ 1953–1991. Public Choice 112(1–2), 55–79 (2002)CrossRefGoogle Scholar
  2. 2.
    Martin, A.D., Quinn, K.M., Epstein, L.: The median justice on the United States supreme court. NCL Rev 83, 1275 (2004)Google Scholar
  3. 3.
    Lawson, B.L., Orrison, M.E., Uminsky, D.T.: Spectral analysis of the supreme court. Math. Mag. 79(5), 340 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Urofsky, M.I.: Dissent and the Supreme Court. Its Role in the Court’s History and the Nation’s Constitutional Dialogue. Vintage, New York (2017)Google Scholar
  5. 5.
    Sirovich, L.: A pattern analysis of the second Rehnquist US supreme court. PNAS 100(13), 7432–7437 (2003)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Kemp, C., Tenenbaum, B.: The discovery of structural form. PNAS 105(31), 10687–10692 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Segal, J.A., Epstein, L., Cameron, C.M., Spaeth, H.J.: Ideological values and the votes of U.S. supreme court justices revisited. J. Politics 57(3), 818–823 (2015)Google Scholar
  8. 8.
    Lee, E.D., Broedersz, C.P., Bialek, W.: Statistical mechanics of the US supreme court. J. Stat. Phys. 160(2), 275–301 (2015)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Tate, C.N.: Personal attribute models of the voting behavior of US Supreme Court justices: liberalism in civil liberties and economics decisions, 1946–1978. Am. Polit. Sci. Rev. 75, 355–367 (1981)CrossRefGoogle Scholar
  10. 10.
    Spaeth, H.J., Epstein, L., Martin, A.D., Segal, J.A., Ruger, T.W., Benesh, S.C.: 2017 Supreme Court DatabaseGoogle Scholar
  11. 11.
    Supreme Court of the United States. The Supreme Court at WorkGoogle Scholar
  12. 12.
    Ho, D.E., Quinn, K.M.: How not to lie with judicial votes: misconceptions, measurement, and models. Calif. Law Rev. 98(3), 813–876 (2010)Google Scholar
  13. 13.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)zbMATHGoogle Scholar
  15. 15.
    Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620 (1957)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Bialek, W.S.: Biophysics: Searching for Principles. Princeton University Press, Princeton (2012)Google Scholar
  17. 17.
    Nguyen, H.C., Zecchina, R., Berg, J.: Inverse statistical problems: from the inverse Ising problem to data science. Adv. Phys. 66, 197–261 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Lee, E.D., Daniels, B.C.: Convenient Interface to Inverse Ising (ConIII): A Python package for solving maximum entropy models. arXiv, pp. 1–8 (2018)Google Scholar
  19. 19.
    Broderick, T., Dudik, M., Tkačik, G., Schapire, R.E., Bialek, W.: Faster solutions of the inverse pairwise Ising problem. arXiv, pp. 1–8 (2007)Google Scholar
  20. 20.
    The Court’s Uncompromising Libertarian. Time 106(21):77 (1975)Google Scholar
  21. 21.
    Epstein, L., Segal, J.A., Spaeth, H.J.: The norm of consensus on the US supreme court. Am. J. Polit. Sci. 45(2), 362–377 (2010)CrossRefGoogle Scholar
  22. 22.
    Poole, K.T., Rosenthal, H.: A spatial model for legislative roll call analysis. Am. J. Polit. Sci. 29(2), 357–384 (1985)CrossRefGoogle Scholar
  23. 23.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)zbMATHGoogle Scholar
  24. 24.
    Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning. MIT Press, Cambridge (2006)zbMATHGoogle Scholar
  25. 25.
    Poole, K.T., Lewis, J.B., Lo, J., Carroll, R.: Scaling roll call votes with W-NOMINATE in R. SSRN J.  https://doi.org/10.2139/ssrn.1276082 (2008)
  26. 26.
    Ising, E.: Beitrag zur Theorie des Ferromagnetismus. PhD thesis, University of Hamburg (1924)Google Scholar
  27. 27.
    Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    Schwab, D.J., Nemenman, I., Mehta, P.: Zipf’s law and criticality in multivariate data without fine-tuning. Phys. Rev. Lett. 113(6), 068102 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. PNAS 79(8), 2554–2558 (1982)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Schneidman, E., Berry II, M.J., Segev, R., Bialek, W.: Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440(20), 1007–1012 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Bray, A.J., Moore, M.A.: Metastable states, internal field distributions and magnetic excitations in spin glasses. J. Phys. C 14(19), 2629–2664 (1981)ADSCrossRefGoogle Scholar
  32. 32.
    Guimerà, R., Sales-Pardo, M.: Justice blocks and predictability of U.S. supreme court votes. PLoS ONE 6(11), e27188 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Daniels, B.C., Krakauer, D.C., Flack, J.C.: Control of finite critical behaviour in a small-scale social system. Nat. Commun. 8, 14301–14308 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    Walker, T.G., Epstein, L., Dixon, W.J.: On the mysterious demise of consensual norms in the United States Supreme Court. J. Politics 50(2), 361–389 (1988)CrossRefGoogle Scholar
  35. 35.
    MacKay, D.J.C.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, Cambridge (2005)Google Scholar
  36. 36.
    Baum, L.: Comparing the policy positions of supreme court justices from different periods. West. Polit. Q. 42(4), 509–521 (1989)CrossRefGoogle Scholar
  37. 37.
    Ruger, T.W., Kim, P.T., Martin, A.D., Quinn, K.M.: Competing approaches to predicting supreme court decision making. Columbia law Rev. 104(4), 1150–1210 (2004)CrossRefGoogle Scholar
  38. 38.
    Katz, D.M., Bommarito, M.J., Blackman, J.: A general approach for predicting the behavior of the Supreme Court of the United States. PLoS ONE 12(4), e0174698 (2017)CrossRefGoogle Scholar
  39. 39.
    Sherrington, D., Kirkpatrick, S.: Solvable model of a spin-glass. Phys. Rev. Lett. 35(26), 1792–1796 (1975)ADSCrossRefGoogle Scholar
  40. 40.
    Nishimori, H.: Statistical Physics of Spin Glasses and Information Processing: An Introduction. Clarendon Press, Oxford (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsCornell UniversityIthacaUSA

Personalised recommendations