Journal of Statistical Physics

, Volume 172, Issue 6, pp 1545–1563 | Cite as

Limit Shapes for Gibbs Ensembles of Partitions

  • Ibrahim FatkullinEmail author
  • Valeriy Slastikov


We explicitly compute limit shapes for several grand canonical Gibbs ensembles of partitions of integers. These ensembles appear in models of aggregation and are also related to invariant measures of zero range and coagulation-fragmentation processes. We show, that all possible limit shapes for these ensembles fall into several distinct classes determined by the asymptotics of the internal energies of aggregates.


Limit shapes Partitions of integers Aggregation Zero range processes 



The authors are grateful to the anonymous reviewers for valuable suggestions and references. Ibrahim Fatkullin acknowledges support by the NSF Grant DMS-1056471. Valeriy Slastikov acknowledges support by the Leverhulme Research Grant, RPG-2014-226.


  1. 1.
    Andjel, E.D.: Invariant measures for the zero range process. Ann. Probab. 10(3), 525–547 (1982)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bertoin, J.: Random Fragmentation and Coagulation Processes. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  3. 3.
    Borodin, A., Okounkov, A., Olshanski, G.: Asymptotics of Plancherel measures for symmetric groups. J. Am. Math. Soc. 13(3), 481–515 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chatterjee, S., Diaconis, P.: Fluctuations of the Bose–Einstein condensate. J. Phys. A 47(8), 085201 (2014)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Cipriani, A., Zeindler, D.: The limit shape of random permutations with polynomially growing cycle weights. ALEA, Lat. Am. J Probab. Math. Stat. 12(2), 971–999 (2015)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Ercolani, N.M., Jansen, S., Ueltschi, D.: Random partitions in statistical mechanics. Electron. J. Probab. 19(82), 1–37 (2014)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Erlihson, M.M., Granovsky, B.L.: Limit shapes of Gibbs distributions on the set of integer partitions: the expansive case. Ann. l’Inst. Henri Poincaré Probab. Stat. 44(5), 915–945 (2008)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Ewens, W.J.: The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3(1), 87–112 (1972)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Funaki, T., Sasada, M.: Hydrodynamic limit for an evolutional model of two-dimensional Young diagrams. Commun. Math. Phys. 299(2), 335–363 (2010)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Granovsky, B.L., Stark, D.: Developments in the Khintchine-Meinardus probabilistic method for asymptotic enumeration. Electron. J. Combin. 22(4), 4–32 (2015)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Hardy, G.H., Ramanujan, S.: Asymptotic formulae in combinatory analysis. Proc. Lond. Math. Soc. 17, 75–115 (1918)CrossRefGoogle Scholar
  12. 12.
    Kerov, S.V., Vershik, A.M.: Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux. Soviet Math. Dokl 18, 527–531 (1977)zbMATHGoogle Scholar
  13. 13.
    Kingman, J.F.C.: Random partitions in population genetics. Proc. R. Soc. Lond. A 361, 1–20 (1978)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Logan, B.F., Shepp, L.A.: A variational problem for random Young tableaux. Adv. Math. 26(2), 206–222 (1977)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pitman, J.: Combinatorial Stochastic Processes. Lecture Notes in Mathematics. University of California, Berkeley, Berkeley (2006)Google Scholar
  16. 16.
    Schmidt, A., Vershik, A.: Limit measures that arise in the asymptotic theory of symmetric groups. I, II. Teor. Verojatn. i Prim 22, 72–88 (1977)Google Scholar
  17. 17.
    Shiryaev, A.N.: Probability. Graduate Texts in Mathematics, vol. 95. Springer, New York (1996)Google Scholar
  18. 18.
    Szalay, M., Turán, P.: On some problems of the statistical theory of partitions with application to characters of the symmetric group. I. Acta Math. Hung. 29(3–4), 361–379 (1977)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Vershik, A.: Statistical mechanics of combinatorial partitions, and their limit shapes. Funct. Anal. Its Appl. 30(2), 90–105 (1996)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Vershik, A.M.: Limit distribution of the energy of a quantum ideal gas from the viewpoint of the theory of partitions of natural numbers. Russ. Math. Surv. 52(2), 379–386 (1997)CrossRefGoogle Scholar
  21. 21.
    Yakubovich, YuV: Asymptotics of random partitions of a set. Zap. Nauchnykh Semin. POMI 223, 227–250 (1995)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ArizonaTucsonUSA
  2. 2.School of MathematicsUniversity of BristolBristolUK

Personalised recommendations