# On the Validity of Linear Response Theory in High-Dimensional Deterministic Dynamical Systems

- 43 Downloads

## Abstract

This theoretical work considers the following conundrum: linear response theory is successfully used by scientists in numerous fields, but mathematicians have shown that typical low-dimensional dynamical systems violate the theory’s assumptions. Here we provide a proof of concept for the validity of linear response theory in high-dimensional deterministic systems for large-scale observables. We introduce an exemplary model in which observables of resolved degrees of freedom are weakly coupled to a large, inhomogeneous collection of unresolved chaotic degrees of freedom. By employing statistical limit laws we give conditions under which such systems obey linear response theory even if all the degrees of freedom individually violate linear response. We corroborate our result with numerical simulations.

## Keywords

Linear response theory Stochastic limit systems Statistical limit theorems Weak coupling limit## Notes

### Acknowledgements

GAG is partially supported by ARC, Grant DP180101385. CW is supported by an Australian Government Research Training Program (RTP) Scholarship.

## References

- 1.Kubo, R.: The fluctuation-dissipation theorem. Rep. Progr. Phys.
**29**(1), 255 (1966)ADSCrossRefzbMATHGoogle Scholar - 2.Balescu, R.: Equilibrium and Non-equilibrium Statistical Mechanics. Wiley, New York (1975)zbMATHGoogle Scholar
- 3.Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, Oxford (2001)zbMATHGoogle Scholar
- 4.Marconi, U.M.B., Puglisi, A., Rondoni, L., Vulpiani, A.: Fluctuation-dissipation: response theory in statistical physics. Phys. Rep.
**461**, 111 (2008). https://doi.org/10.1016/j.physrep.2008.02.002 ADSCrossRefGoogle Scholar - 5.Majda, A.J., Abramov, R., Gershgorin, B.: High skill in low-frequency climate response through fluctuation dissipation theorems despite structural instability. Proc. Natl. Acad. Sci.
**107**(2), 581 (2010). https://doi.org/10.1073/pnas.0912997107 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 6.Lucarini, V., Sarno, S.: A statistical mechanical approach for the computation of the climatic response to general forcings. Nonlinear Process. Geophys.
**18**(1), 7 (2011). https://doi.org/10.5194/npg-18-7-2011 ADSCrossRefGoogle Scholar - 7.Abramov, R.V., Majda, A.J.: Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems. Nonlinearity
**20**(12), 2793 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 8.Abramov, R.V., Majda, A.J.: New approximations and tests of linear fluctuation-response for chaotic nonlinear forced-dissipative dynamical systems. J. Nonlinear Sci.
**18**(3), 303 (2008). https://doi.org/10.1007/s00332-007-9011-9 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 9.Cooper, F.C., Haynes, P.H.: Climate sensitivity via a nonparametric fluctuation-dissipation theorem. J. Atmos. Sci.
**68**(5), 937 (2011)ADSCrossRefGoogle Scholar - 10.Cooper, F.C., Esler, J.G., Haynes, P.H.: Estimation of the local response to a forcing in a high dimensional system using the fluctuation-dissipation theorem. Nonlin. Process. Geophys.
**20**(2), 239 (2013). https://doi.org/10.5194/npg-20-239-2013 ADSCrossRefGoogle Scholar - 11.Bell, T.L.: Climate sensitivity from fluctuation dissipation: some simple model tests. J. Atmos. Sci.
**37**(8), 1700 (1980). https://doi.org/10.1175/1520-0469(1980)037%3C1700:CSFFDS%3E2.0.CO;2 - 12.Gritsun, A., Dymnikov, V.: Barotropic atmosphere response to small external actions: theory and numerical experiments. Izv. Akad. Nauk. Fiz. Atmos. Okeana. Biol.
**35**, 565 (1999)Google Scholar - 13.Abramov, R.V., Majda, A.J.: A new algorithm for low-frequency climate response. J. Atmos. Sci.
**66**(2), 286 (2009)ADSCrossRefGoogle Scholar - 14.Dymnikov, V.P., Gritsoun, A.S.: Climate model attractors: chaos, quasi-regularity and sensitivity to small perturbations of external forcing. Nonlinear Process. Geophys.
**8**(4/5), 201 (2001). https://doi.org/10.5194/npg-8-201-2001 ADSCrossRefGoogle Scholar - 15.North, G.R., Bell, R.E., Hardin, J.W.: Fluctuation dissipation in a general circulation model. Clim. Dyn.
**8**(6), 259 (1993). https://doi.org/10.1007/BF00209665 CrossRefGoogle Scholar - 16.Cionni, I., Visconti, G., Sassi, F.: Fluctuation dissipation theorem in a general circulation model. Geophys. Res. Lett.
**31**(9), L09206 (2004). https://doi.org/10.1029/2004GL019739 ADSCrossRefGoogle Scholar - 17.Gritsun, A., Branstator, G., Dymnikov, V.: Construction of the linear response operator of an atmospheric general circulation model to small external forcing. Russ. J. Numer. Anal. Math. Modell.
**17**, 399 (2002)MathSciNetzbMATHGoogle Scholar - 18.Gritsun, A., Branstator, G.: Climate response using a three-dimensional operator based on the fluctuation-dissipation theorem. J. Atmos. Sci.
**64**(7), 2558 (2007)ADSCrossRefGoogle Scholar - 19.Gritsun, A., Branstator, G., Majda, A.: Climate response of linear and quadratic functionals using the fluctuation-dissipation theorem. J. Atmos. Sci.
**65**(9), 2824 (2008)ADSCrossRefGoogle Scholar - 20.Ring, M.J., Plumb, R.A.: The response of a simplified GCM to axisymmetric forcings: applicability of the fluctuation-dissipation theorem. J. Atmos. Sci.
**65**(12), 3880 (2008)ADSCrossRefGoogle Scholar - 21.Gritsun, A.S.: Construction of response operators to small external forcings for atmospheric general circulation models with time periodic right-hand sides. Izvestiya Atmos. Ocean. Phys.
**46**(6), 748 (2010). https://doi.org/10.1134/S000143381006006X ADSCrossRefGoogle Scholar - 22.Langen, P.L., Alexeev, V.A.: Estimating \(2 \times \, CO_2\) warming in an aquaplanet GCM using the fluctuation-dissipation theorem. Geophys. Res. Lett. (2005). https://doi.org/10.1029/2005GL024136 Google Scholar
- 23.Kirk-Davidoff, D.B.: On the diagnosis of climate sensitivity using observations of fluctuations. Atmos. Chem. Phys.
**9**(3), 813 (2009). https://doi.org/10.5194/acp-9-813-2009 ADSCrossRefGoogle Scholar - 24.Fuchs, D., Sherwood, S., Hernandez, D.: An exploration of multivariate fluctuation dissipation operators and their response to sea surface temperature perturbations. J. Atmos. Sci.
**72**(1), 472 (2014). https://doi.org/10.1175/JAS-D-14-0077.1 ADSCrossRefGoogle Scholar - 25.Ragone, F., Lucarini, V., Lunkeit, F.: A new framework for climate sensitivity and prediction: a modelling perspective. Clim. Dyn. (2015). https://doi.org/10.1007/s00382-015-2657-3 zbMATHGoogle Scholar
- 26.Ruelle, D.: Differentiation of SRB states. Commun. Math. Phys.
**187**(1), 227 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 27.Ruelle, D.: General linear response formula in statistical mechanics, and the fluctuation-dissipation theorem far from equilibrium. Phys. Lett. A
**245**(3–4), 220 (1998). https://doi.org/10.1016/S0375-9601(98)00419-8 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 28.Ruelle, D.: A review of linear response theory for general differentiable dynamical systems. Nonlinearity
**22**(4), 855 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 29.Ruelle, D.: Structure and f-dependence of the a.c.i.m. for a unimodal map f of Misiurewicz type. Commun. Math. Phys.
**287**(3), 1039 (2009). https://doi.org/10.1007/s00220-008-0637-8 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 30.Baladi, V., Smania, D.: Linear response formula for piecewise expanding unimodal maps. Nonlinearity
**21**(4), 677 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 31.Baladi, V., Smania, D.: Alternative proofs of linear response for piecewise expanding unimodal maps. Ergod. Theory Dyn. Syst.
**30**(01), 1 (2010)MathSciNetCrossRefzbMATHGoogle Scholar - 32.Baladi, V.: ICM Seoul 2014, Proceedings, vol. III (2014), pp. 525–545Google Scholar
- 33.Baladi, V., Benedicks, M., Schnellmann, D.: Whitney-Hölder continuity of the SRB measure for transversal families of smooth unimodal maps. Invent. Math.
**201**(3), 773 (2015). https://doi.org/10.1007/s00222-014-0554-8 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 34.De Lima, A., Smania, D.: Central limit theorem for the modulus of continuity of averages of observables on transversal families of piecewise expanding unimodal maps (2015). arXiv:1503.01423 [math.DS]
- 35.Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett.
**74**, 2694 (1995). https://doi.org/10.1103/PhysRevLett.74.2694 ADSCrossRefGoogle Scholar - 36.Gallavotti, G., Cohen, E.: Dynamical ensembles in stationary states. J. Stat. Phys.
**80**(5–6), 931 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 37.Gottwald, G.A., Wormell, J.P., Wouters, J.: On spurious detection of linear response and misuse of the fluctuation-dissipation theorem in finite time series. Physica D
**331**, 89 (2016). https://doi.org/10.1016/j.physd.2016.05.010 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 38.Hänggi, P.: Stochastic processes 2: response theory and fluctuation theorems. Helv. Phys. Acta
**51**(2), 202 (1978)MathSciNetGoogle Scholar - 39.Hairer, M., Majda, A.J.: A simple framework to justify linear response theory. Nonlinearity
**23**(4), 909 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 40.Melbourne, I., Stuart, A.: A note on diffusion limits of chaotic skew-product flows. Nonlinearity
**24**, 1361 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 41.Gottwald, G.A., Melbourne, I.: Homogenization for deterministic maps and multiplicative noise. Proc. R. Soc. A
**469**(2156), 20130201 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 42.Kelly, D., Melbourne, I.: Deterministic homogenization for fast-slow systems with chaotic noises, arXiv:1409.5748 [math.PR] (2014)
- 43.Ford, G.W., Kac, M., Mazur, P.: Statistical mechanics of assemblies of coupled oscillators. J. Math. Phys.
**6**, 504 (1965). https://doi.org/10.1063/1.1704304 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 44.Zwanzig, R.: Nonlinear generalized Langevin equations. J. Stat. Phys.
**9**, 215 (1973)ADSCrossRefGoogle Scholar - 45.Ford, G.W., Kac, M.: On the quantum Langevin equation. J. Stat. Phys.
**46**(5–6), 803 (1987). https://doi.org/10.1007/BF01011142 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 46.Stuart, A.M., Warren, J.O.: Analysis and experiments for a computational model of a heat bath. J. Stat. Phys.
**97**(3), 687 (1999). https://doi.org/10.1023/A:1004667325896 ADSCrossRefzbMATHGoogle Scholar - 47.Kupferman, R., Stuart, A.M., Terry, J.R., Tupper, P.F.: Long-term behaviour of large mechanical systems with random initial data. Stoch. Dyn.
**2**(4), 533 (2002). https://doi.org/10.1142/S0219493702000571 MathSciNetCrossRefzbMATHGoogle Scholar - 48.Givon, D., Kupferman, R., Stuart, A.: Extracting macroscopic dynamics: model problems and algorithms. Nonlinearity
**17**(6), R55 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar - 49.Karlin, S., Taylor, H.M.: A First Course in Stochastic Processes, 2nd edn. Academic Press, New York (1975)zbMATHGoogle Scholar
- 50.Kahane, J.P.: Some Random Series of Functions. Cambridge Studies in Advanced Mathematics, vol. 5, 2nd edn. Cambridge University Press, Cambridge (1985)zbMATHGoogle Scholar
- 51.Dolgopyat, D.: On differentiability of SRB states for partially hyperbolic systems. Invent. Math.
**155**(2), 389 (2004). https://doi.org/10.1007/s00222-003-0324-5 ADSMathSciNetCrossRefzbMATHGoogle Scholar - 52.De Simoi, J., Liverani, C.: Hyperbolic dynamics, fluctuations and large deviations. In: Proc. Sympos. Pure Math., vol. 89, pp. 311–339. Amer. Math. Soc., Providence, RI (2015). https://doi.org/10.1090/pspum/089/01490
- 53.De Simoi, J., Liverani, C.: Statistical properties of mostly contracting fast-slow partially hyperbolic systems. Invent. Math.
**206**(1), 147 (2016). https://doi.org/10.1007/s00222-016-0651-y ADSMathSciNetCrossRefzbMATHGoogle Scholar - 54.Galias, Z.: Systematic search for wide periodic windows and bounds for the set of regular parameters for the quadratic map, Chaos: an interdisciplinary. J. Nonlinear Sci.
**27**(5), 053106 (2017)zbMATHGoogle Scholar - 55.Melbourne, I.: Fast-slow skew product systems and convergence to stochastic differential equations (2015). http://homepages.lboro.ac.uk/~mawb/Melbourne2_notes.pdf. Lecture notes. http://homepages.lboro.ac.uk/~mawb/Melbourne2_notes.pdf
- 56.Collet, P., Eckmann, J.P.: Concepts and Results in Chaotic Dynamics: A Short Course. Springer, Berlin (2007)zbMATHGoogle Scholar
- 57.Box, G.E.P., Hunter, J.S., Hunter, W.G.: Statistics for Experimenters: Design, Innovation, and Discovery. Wiley Series in Probability and Statistics. Wiley, Hoboken (2005). http://opac.inria.fr/record=b1133268