Motion of a Rigid Body in a Special Lorentz Gas: Loss of Memory Effect
Abstract
Linear motion of a rigid body in a special kind of Lorentz gas is mathematically analyzed. The rigid body moves against gas drag according to Newton’s equation. The gas model is a special Lorentz gas consisting of gas molecules and background obstacles, which was introduced in Tsuji and Aoki (J Stat Phys 146:620–645, 2012). The specular boundary condition is imposed on the resulting kinetic equation. This study complements the numerical study by Tsuji and Aoki cited above—although the setting in this paper is slightly different from theirs, qualitatively the same asymptotic behavior is proved: The velocity V(t) of the rigid body decays exponentially if the obstacles undergo thermal motion; if the obstacles are motionless, then the velocity V(t) decays algebraically with a rate \(t^{-\,5}\) independent of the spatial dimension. This demonstrates the idea that interaction of the molecules with the background obstacles destroys the memory effect due to recollision.
Keywords
Lorentz gas Moving boundary problem Memory effectNotes
Acknowledgements
I thank T. Tsuji for his comments on the references.
References
- 1.Aoki, K., Cavallaro, G., Marchioro, C., Pulvirenti, M.: On the motion of a body in thermal equilibrium immersed in a perfect gas. ESAIM: M2AN 42, 263–275 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Aoki, K., Tsuji, T., Cavallaro, G.: Approach to steady motion of a plate moving in a free-molecular gas under a constant external force. Phys. Rev. E 80, 016309 (2009)ADSCrossRefGoogle Scholar
- 3.Belmonte, A., Jacobsen, J., Jayaraman, A.: Monotone solutions of a nonautonomous differential equation for a sedimenting sphere. Electron. J. Differ. Equ. 2001, 1–17 (2001)MathSciNetzbMATHGoogle Scholar
- 4.Buttà, P., Cavallaro, G., Marchioro, C.: Mathematical Models of Viscous Friction. Springer International Publishing, Basel (2015)CrossRefzbMATHGoogle Scholar
- 5.Caprino, S., Marchioro, C., Pulvirenti, M.: Approach to equilibrium in a microscopic model of friction. Commun. Math. Phys. 264, 167–189 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 6.Caprino, S., Cavallaro, G., Marchioro, C.: On a microscopic model of viscous friction. Math. Models Methods Appl. Sci. 17, 1369–1403 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Cavallaro, G.: On the motion of a convex body interacting with a perfect gas in the mean-field approximation. Rend. Mat. 27, 123–145 (2007)MathSciNetzbMATHGoogle Scholar
- 8.Cavallaro, G., Marchioro, C.: On the motion of an elastic body in a free gas. Rep. Math. Phys. 69, 251–264 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 9.Cavallaro, G., Marchioro, C., Tsuji, T.: Approach to equilibrium of a rotating sphere in a Stokes flow. Ann. Univ. Ferrara 57, 211–228 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Chen, X., Strauss, W.: Approach to equilibrium of a body colliding specularly and diffusely with a sea of particles. Arch. Ration. Mech. Anal. 211, 879–910 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Chen, X., Strauss, W.: Velocity reversal criterion of a body immersed in a sea of particles. Commun. Math. Phys. 338, 139–168 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 12.Chen, X., Strauss, W.: Convergence to equilibrium of a body moving in a kinetic sea. SIAM J. Math. Anal. 47, 4630–4651 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 13.Daitche, A.: On the role of the history force for inertial particles in turbulence. J. Fluid Mech. 782, 567–593 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 14.Daitche, A., Tél, T.: Memory effects are relevant for chaotic advection of inertial particles. Phys. Rev. Lett. 107, 244501 (2011)ADSCrossRefGoogle Scholar
- 15.Dechristé, G., Mieussens, L.: Numerical simulation of micro flows with moving obstacles. J. Phys.: Conf. Ser. 362, 012030 (2012)Google Scholar
- 16.Fanelli, C., Sisti, F., Stagno, G.V.: Time dependent friction in a free gas. J. Math. Phys. 57, 033501 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 17.Jin, W., Kleijn, C.R., van Ommen, J.R.: Direct simulation Monte Carlo calculation of rarefied gas drag using an immersed boundary method. AIP Conf. Proc. 1738, 480017 (2016)CrossRefGoogle Scholar
- 18.Kobert, M.: Application of the finite pointset method to moving boundary problems for the BGK model of rarefied gas dynamics. Ph.D. thesis, Fachbereich Mathematik, Technische Universität Kaiserslautern (2015)Google Scholar
- 19.Koike, K.: Wall effect on the motion of a rigid body immersed in a free molecular flow. Kinet. Relat. Models 11, 441–467 (2018)MathSciNetCrossRefGoogle Scholar
- 20.Rader, D.J., Gallis, M.A., Torczynski, J.R.: DSMC moving-boundary algorithms for simulating MEMS geometries with opening and closing gaps. AIP Conf. Proc. 1333, 760 (2011)ADSCrossRefGoogle Scholar
- 21.Russo, G., Filbet, F.: Semilagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics. Kinet. Relat. Models 2, 231–250 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Shrestha, S.: Modeling and Simulation of a Moving Rigid Body in a Rarefied Gas. Ph.D. thesis, Fachbereich Mathematik, Technische Universität Kaiserslautern (2015)Google Scholar
- 23.Shrestha, S., Tiwari, S., Klar, A.: Comparison of numerical solutions of the Boltzmann and the Navier–Stokes equations for a moving rigid circular body in a micro scaled cavity. Int. J. Adv. Eng. Sci. Appl. Math. 7, 38–50 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 24.Shrestha, S., Tiwari, S., Klar, A., Hardt, S.: Numerical simulation of a moving rigid body in a rarefied gas. J. Comput. Phys. 292, 239–252 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 25.Sisti, F., Ricciuti, C.: Effects of concavity on the motion of a body immersed in a Vlasov gas. SIAM J. Math. Anal. 46, 3579–3611 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 26.Sone, Y.: Molecular Gas Dynamics: Theory, Techniques, and Applications. Birkäuser, Boston (2007)CrossRefzbMATHGoogle Scholar
- 27.Tiwari, S., Klar, A., Hardt, S., Donkov, A.: Coupled solution of the Boltzmann and Navier–Stokes equations in gas–liquid two phase flow. Comput. Fluids 71, 283–296 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 28.Tsuji, T., Aoki, K.: Decay of a linear pendulum in a free-molecular gas and in a special Lorentz gas. J. Stat. Phys. 146, 620–645 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 29.Tsuji, T., Aoki, K.: Moving boundary problems for a rarefied gas: spatially one-dimensional case. J. Comput. Phys. 250, 574–600 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
- 30.Tsuji, T., Aoki, K.: Decay of a linear pendulem in a collisional gas: spatially one-dimensional case. Phys. Rev. E 89, 052129 (2014)ADSCrossRefGoogle Scholar
- 31.Tsuji, T., Aoki, K.: Gas motion in a microgap between a stationary plate and a plate oscillating in its normal direction. Microfluid. Nanofluid. 16, 1033–1045 (2014)CrossRefGoogle Scholar
- 32.Tsuji, T., Arai, J., Kawano, S.: Slow approach to steady motion of a concave body in a free-molecular gas. Phys. Rev. E 92, 012130 (2015)ADSMathSciNetCrossRefGoogle Scholar
- 33.Vázquez, J.L., Zuazua, E.: Large time behavior for a simplified 1D model of fluid-solid interaction. Commun. Partial Differ. Equ. 28, 1–36 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 34.Versluis, R., Dorsman, R., Thielen, L., Roos, M.E.: Numerical investigation of turbomolecular pumps using the direct simulation Monte Carlo method with moving surfaces. J. Vac. Sci. Technol. A 27, 543–547 (2009)CrossRefGoogle Scholar