Advertisement

Journal of Statistical Physics

, Volume 172, Issue 3, pp 795–823 | Cite as

Motion of a Rigid Body in a Special Lorentz Gas: Loss of Memory Effect

Article
  • 43 Downloads

Abstract

Linear motion of a rigid body in a special kind of Lorentz gas is mathematically analyzed. The rigid body moves against gas drag according to Newton’s equation. The gas model is a special Lorentz gas consisting of gas molecules and background obstacles, which was introduced in Tsuji and Aoki (J Stat Phys 146:620–645, 2012). The specular boundary condition is imposed on the resulting kinetic equation. This study complements the numerical study by Tsuji and Aoki cited above—although the setting in this paper is slightly different from theirs, qualitatively the same asymptotic behavior is proved: The velocity V(t) of the rigid body decays exponentially if the obstacles undergo thermal motion; if the obstacles are motionless, then the velocity V(t) decays algebraically with a rate \(t^{-\,5}\) independent of the spatial dimension. This demonstrates the idea that interaction of the molecules with the background obstacles destroys the memory effect due to recollision.

Keywords

Lorentz gas Moving boundary problem Memory effect 

Notes

Acknowledgements

I thank T. Tsuji for his comments on the references.

References

  1. 1.
    Aoki, K., Cavallaro, G., Marchioro, C., Pulvirenti, M.: On the motion of a body in thermal equilibrium immersed in a perfect gas. ESAIM: M2AN 42, 263–275 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aoki, K., Tsuji, T., Cavallaro, G.: Approach to steady motion of a plate moving in a free-molecular gas under a constant external force. Phys. Rev. E 80, 016309 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    Belmonte, A., Jacobsen, J., Jayaraman, A.: Monotone solutions of a nonautonomous differential equation for a sedimenting sphere. Electron. J. Differ. Equ. 2001, 1–17 (2001)MathSciNetMATHGoogle Scholar
  4. 4.
    Buttà, P., Cavallaro, G., Marchioro, C.: Mathematical Models of Viscous Friction. Springer International Publishing, Basel (2015)CrossRefMATHGoogle Scholar
  5. 5.
    Caprino, S., Marchioro, C., Pulvirenti, M.: Approach to equilibrium in a microscopic model of friction. Commun. Math. Phys. 264, 167–189 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Caprino, S., Cavallaro, G., Marchioro, C.: On a microscopic model of viscous friction. Math. Models Methods Appl. Sci. 17, 1369–1403 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cavallaro, G.: On the motion of a convex body interacting with a perfect gas in the mean-field approximation. Rend. Mat. 27, 123–145 (2007)MathSciNetMATHGoogle Scholar
  8. 8.
    Cavallaro, G., Marchioro, C.: On the motion of an elastic body in a free gas. Rep. Math. Phys. 69, 251–264 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cavallaro, G., Marchioro, C., Tsuji, T.: Approach to equilibrium of a rotating sphere in a Stokes flow. Ann. Univ. Ferrara 57, 211–228 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Chen, X., Strauss, W.: Approach to equilibrium of a body colliding specularly and diffusely with a sea of particles. Arch. Ration. Mech. Anal. 211, 879–910 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chen, X., Strauss, W.: Velocity reversal criterion of a body immersed in a sea of particles. Commun. Math. Phys. 338, 139–168 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chen, X., Strauss, W.: Convergence to equilibrium of a body moving in a kinetic sea. SIAM J. Math. Anal. 47, 4630–4651 (2015)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Daitche, A.: On the role of the history force for inertial particles in turbulence. J. Fluid Mech. 782, 567–593 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Daitche, A., Tél, T.: Memory effects are relevant for chaotic advection of inertial particles. Phys. Rev. Lett. 107, 244501 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Dechristé, G., Mieussens, L.: Numerical simulation of micro flows with moving obstacles. J. Phys.: Conf. Ser. 362, 012030 (2012)Google Scholar
  16. 16.
    Fanelli, C., Sisti, F., Stagno, G.V.: Time dependent friction in a free gas. J. Math. Phys. 57, 033501 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Jin, W., Kleijn, C.R., van Ommen, J.R.: Direct simulation Monte Carlo calculation of rarefied gas drag using an immersed boundary method. AIP Conf. Proc. 1738, 480017 (2016)CrossRefGoogle Scholar
  18. 18.
    Kobert, M.: Application of the finite pointset method to moving boundary problems for the BGK model of rarefied gas dynamics. Ph.D. thesis, Fachbereich Mathematik, Technische Universität Kaiserslautern (2015)Google Scholar
  19. 19.
    Koike, K.: Wall effect on the motion of a rigid body immersed in a free molecular flow. Kinet. Relat. Models 11, 441–467 (2018)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Rader, D.J., Gallis, M.A., Torczynski, J.R.: DSMC moving-boundary algorithms for simulating MEMS geometries with opening and closing gaps. AIP Conf. Proc. 1333, 760 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    Russo, G., Filbet, F.: Semilagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics. Kinet. Relat. Models 2, 231–250 (2009)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Shrestha, S.: Modeling and Simulation of a Moving Rigid Body in a Rarefied Gas. Ph.D. thesis, Fachbereich Mathematik, Technische Universität Kaiserslautern (2015)Google Scholar
  23. 23.
    Shrestha, S., Tiwari, S., Klar, A.: Comparison of numerical solutions of the Boltzmann and the Navier–Stokes equations for a moving rigid circular body in a micro scaled cavity. Int. J. Adv. Eng. Sci. Appl. Math. 7, 38–50 (2015)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Shrestha, S., Tiwari, S., Klar, A., Hardt, S.: Numerical simulation of a moving rigid body in a rarefied gas. J. Comput. Phys. 292, 239–252 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Sisti, F., Ricciuti, C.: Effects of concavity on the motion of a body immersed in a Vlasov gas. SIAM J. Math. Anal. 46, 3579–3611 (2014)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Sone, Y.: Molecular Gas Dynamics: Theory, Techniques, and Applications. Birkäuser, Boston (2007)CrossRefMATHGoogle Scholar
  27. 27.
    Tiwari, S., Klar, A., Hardt, S., Donkov, A.: Coupled solution of the Boltzmann and Navier–Stokes equations in gas–liquid two phase flow. Comput. Fluids 71, 283–296 (2013)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Tsuji, T., Aoki, K.: Decay of a linear pendulum in a free-molecular gas and in a special Lorentz gas. J. Stat. Phys. 146, 620–645 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Tsuji, T., Aoki, K.: Moving boundary problems for a rarefied gas: spatially one-dimensional case. J. Comput. Phys. 250, 574–600 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Tsuji, T., Aoki, K.: Decay of a linear pendulem in a collisional gas: spatially one-dimensional case. Phys. Rev. E 89, 052129 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    Tsuji, T., Aoki, K.: Gas motion in a microgap between a stationary plate and a plate oscillating in its normal direction. Microfluid. Nanofluid. 16, 1033–1045 (2014)CrossRefGoogle Scholar
  32. 32.
    Tsuji, T., Arai, J., Kawano, S.: Slow approach to steady motion of a concave body in a free-molecular gas. Phys. Rev. E 92, 012130 (2015)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    Vázquez, J.L., Zuazua, E.: Large time behavior for a simplified 1D model of fluid-solid interaction. Commun. Partial Differ. Equ. 28, 1–36 (2003)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Versluis, R., Dorsman, R., Thielen, L., Roos, M.E.: Numerical investigation of turbomolecular pumps using the direct simulation Monte Carlo method with moving surfaces. J. Vac. Sci. Technol. A 27, 543–547 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Fundamental Science and Technology, Graduate School of Science and Technology Keio UniversityKohokuku, YokohamaJapan
  2. 2.RIKEN Center for Advanced Intelligence ProjectTokyoJapan

Personalised recommendations