Journal of Statistical Physics

, Volume 172, Issue 3, pp 824–832 | Cite as

Some Two-Point Resistances of the Sierpinski Gasket Network

  • Zhuozhuo Jiang
  • Weigen YanEmail author


In this paper, we use the principle of substitution to replace sub-gaskets of the Sierpinski gasket network by an equivalent Y-network which enables the use of only the Delta–Wye transformation and the series and parallel principles to derive some two-point resistances of the Sierpinski gasket network with dimension two.


Resistance Network Sierpinski gasket 



We are grateful to the referees for providing some helpful revising suggestions. Particularly, one of referees told us that \(R_{S(n)}(a_{n1} \cdot a_{n2})\) can be obtained by the results on the number of spanning trees in [22] and he (or she) also pointed out that \(R_{SG_d(n)}(a_{n1},a_{n2})\) can be obtained in a similar method.


  1. 1.
    Kirchhoff, G.R.: Über die Auflösung der Gleichungen, auf welche man bei der untersuchung der linearen verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)ADSCrossRefGoogle Scholar
  2. 2.
    Doyle, P.G., Snell, J.L.: Random walks and electric. Networks 22, 595–599 (2000)Google Scholar
  3. 3.
    van der Pol, B.: The Finite-Difference Analogy of the Periodic Wave Equation and the Potential Equation. Lectures in Applied Mathematics, vol. 1. Interscience, London, pp. 237–257 (1959)Google Scholar
  4. 4.
    Molina, M.I.: Interaction of a discrete soliton with a surface mode. Phys. Rev. B 73, 014204 (2006)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Kyung, B., Kancharla, S.S., Sénéchal, D., Tremblay, A.M.S., Civelli, M., Kotliar, G.: Pseudogap induced by short-range spin correlations in a doped Mott insulator. Phys. Rev. B 73, 165114 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Alaeiyan, M., Mojarad, R., Asadpour, J.: The wiener polynomial of polyomino chains. Appl. Math. Sci. 58, 2891–2897 (2012)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Yang, Y.J., Zhang, H.P.: Kirchhoff index of linear hexagonal chains. Int. J. Quantum Chem. 108, 503–512 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Zhang, H.P., Yang, Y.J.: Resistance distance and Kirchhoff index in circulant graphs. Int. J. Quantum Chem. 107, 330–339 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Xiao, W.J., Gutman, I.: Resistance distance and Laplacian spectrum. Theor. Chem. Acc. 110, 284–289 (2003)CrossRefGoogle Scholar
  10. 10.
    Chen, H.Y., Zhang, F.J.: Resistance distance and the normalized Laplacian spectrum. Discret. Appl. Math. 155, 654 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chen, H.Y., Zhang, F.: J. Math. Chem. 44, 405–417 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Yang, Y.J., Klein, D.J.: A recursion formula for resistance distances and its applications. Discret. Appl. Math. 161, 2702–2715 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Yang, Y.J., Zhang, H.P.: Some rules on resistance distance with applications. J. Phys. A 41, 445203 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Falconer, K.J.: Fractal geometry: mathematical foundations and applications. Biometrics 46, 499 (1990)CrossRefzbMATHGoogle Scholar
  15. 15.
    Mandelbrot, B.B., Wheeler, J.A.: The Fractal Geometry of Nature. W. H. Freeman, San Francisco (1982)Google Scholar
  16. 16.
    Dobrynin, A.A., Entringer, R., Gutman, I.: Wiener index of trees: theory and applications. Acta Appl. Math. 66, 211–249 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lucic, B., Lukovits, I., Nikolic, S., Trinajstic, N.: Distance-related indices in the quantitative structure property relationship modeling. J. Chem. Inf. Comput. Sci. 41, 527–535 (2001)CrossRefGoogle Scholar
  18. 18.
    Barooah, P., Hespanha, J.P.: Graph effective resistances and distributed control: spectral properties and applications. In: IEEE Conference on Decision and Control, pp. 3479–3485 (2006)Google Scholar
  19. 19.
    Klein, D.J., Randić, M.: Resistance distance. J. Math. Chem. 12, 81–95 (1993)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kar, S., Moura, J.M.F.: Sensor networks with random links: topology design for distributed consensus. IEEE Trans. Signal Process. 56, 3315–3326 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Stewart, I.: Four encounters with Sierpinskis gasket. Math. Intell. 17, 52–64 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Chang, S.C., Chen, L.C., Yang, W.S.: Spanning trees on the Sierpinski gasket. J. Stat. Phys. 126, 649–667 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Daerden, F., Vanderzande, C.: Sandpile on a Sierpinski gasket. Physica A 256, 533–546 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    Chang, S.C., Chen, L.C.: Hamiltonian walks on the Sierpinski gasket. J. Stat. Phys. 52, 023301 (2011)ADSMathSciNetzbMATHGoogle Scholar
  25. 25.
    Chang, S.C., Chen, L.C.: Dimer coverings on the Sierpinski gasket. J. Stat. Phys. 131, 631–650 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Chang, S.C.: Dimer–monomer model on the Sierpinski gasket. Physica A 387, 1551–1566 (2007)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Gefen, Y., Aharony, A., Mandelbrot, B,B., et al.: Solvable fractal family, and its possible relation to the backbone at percolation. Phys. Rev. Lett. 47, 1771–1774 (1981)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Kennelly, A.E.: Equivalence of triangles and stars in conducting networks. Electr. World Eng. 34, 413–414 (1899)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of SciencesJimei UniversityXiamenChina

Personalised recommendations