Journal of Statistical Physics

, Volume 171, Issue 3, pp 493–520 | Cite as

Chapman–Enskog Analyses on the Gray Lattice Boltzmann Equation Method for Fluid Flow in Porous Media

  • Chen Chen
  • Like Li
  • Renwei Mei
  • James F. Klausner
Article
  • 64 Downloads

Abstract

The gray lattice Boltzmann equation (GLBE) method has recently been used to simulate fluid flow in porous media. It employs a partial bounce-back of populations (through a fractional coefficient θ, which represents the fraction of populations being reflected by the solid phase) in the evolution equation to account for the linear drag of the medium. Several particular GLBE schemes have been proposed in the literature and these schemes are very easy to implement; but there exists uncertainty about the need for redefining the macroscopic velocity as there has been no systematic analysis to recover the Brinkman equation from the various GLBE schemes. Rigorous Chapman–Enskog analyses are carried out to show that the momentum equation recovered from these schemes can satisfy Brinkman equation to second order in \( \epsilon \) only if \( \theta = {\rm O}\left( \epsilon \right) \) in which \( \epsilon \) is the ratio of the lattice spacing to the characteristic length of physical dimension. The need for redefining macroscopic velocity is shown to be scheme-dependent. When a body force is encountered such as the gravitational force or that caused by a pressure gradient, different forms of forcing redefinitions are required for each GLBE scheme.

Keywords

Lattice Boltzmann method Brinkman equation Chapman–Enskog expansion 

Notes

Acknowledgements

This work was partially supported by the U.S. Department of Energy, ARPA-E, under Award No. DEAR0000184, and the U.S. Department of Energy, SunShot Initiative, under Award No. DE-EE0006534.

References

  1. 1.
    Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 2, 155–161 (1951)CrossRefGoogle Scholar
  2. 2.
    He, X., Luo, L.-S.: Lattice Boltzmann model for the incompressible Navier–Stokes equation. J. Stat. Phys. 88, 927–944 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Luo, L.-S., Girimaji, S.: Theory of the lattice Boltzmann method: two-fluid model for binary mixtures. Phys. Rev. E 67, 1–11 (2003)Google Scholar
  4. 4.
    Mei, R., Luo, L.-S., Shyy, W.: An accurate curved boundary treatment in the lattice Boltzmann method. J. Comput. Phys. 155, 307–330 (1999)ADSCrossRefMATHGoogle Scholar
  5. 5.
    Li, L., Mei, R., Klausner, J.F.: Boundary conditions for thermal lattice Boltzmann equation method. J. Comput. Phys. 237, 366–395 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Li, L., Chen, C., Mei, R., Klausner, J.F.: Conjugate heat and mass transfer in the lattice Boltzmann equation method. Phys. Rev. E 89, 043308 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    Li, L., Mei, R., Klausner, J.F.: Lattice Boltzmann models for the convection-diffusion equation: D2Q5 vs D2Q9. Int. J. Heat Mass Transfer 108, 41–62 (2017)CrossRefGoogle Scholar
  8. 8.
    Qian, Y.H., D’Humières, D., Lallemand, P.: Lattice BGK models for Navier–Stokes equation. EPL 17, 479 (1992)ADSCrossRefMATHGoogle Scholar
  9. 9.
    Chen, H., Chen, S., Matthaeus, W.H.: Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. A 45, 5339–5342 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    Ginzburg, I.: Equilibrium-type and link-type lattice Boltzmann models for generic advection and anisotropic-dispersion equation. Adv. Water Resour. 28, 1171–1195 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Ginzburg, I., Verhaeghe, F., d’Humières, D.: Study of simple hydrodynamic solutions with the two-relaxation-times lattice Boltzmann scheme. Commun. Comput. Phys. 3, 519–581 (2008)MathSciNetGoogle Scholar
  12. 12.
    Ginzburg, I., Verhaeghe, F., d’Humières, D.: Two-relaxation-time Lattice Boltzmann scheme: about parametrization, velocity, pressure and mixed boundary conditions. Commun. Comput. Phys. 3, 427–478 (2008)MathSciNetGoogle Scholar
  13. 13.
    Freed, D.M.: Lattice-Boltzmann method for macroscopic porous media modeling. Int. J. Modern Phys. C 9, 1491–1503 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    Guo, Z., Zhao, T.S.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66, 1–9 (2002)Google Scholar
  15. 15.
    Ginzburg, I.: Consistent lattice Boltzmann schemes for the Brinkman model of porous flow and infinite Chapman-Enskog expansion. Phys. Rev. E 77, 1–12 (2008)CrossRefGoogle Scholar
  16. 16.
    Walsh, S.D.C., Burwinkle, H., Saar, M.O.: A new partial-bounceback lattice-Boltzmann method for fluid flow through heterogeneous media. Comput. Geosci. 35, 1186–1193 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Zhu, J., Ma, J.: An improved gray lattice Boltzmann model for simulating fluid flow in multi-scale porous media. Adv. Water Resour. 56, 61–76 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    Yoshida, H., Hayashi, H.: Transmission-reflection coefficient in the lattice Boltzmann method. J. Stat. Phys. 155, 277–299 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Thorne, D.T., Sukop, M.C.: Lattice Boltzmann model for the elder problem. Dev. Water Sci. 55, 1549–1557 (2004)CrossRefGoogle Scholar
  20. 20.
    Ginzburg, I.: Comment on “An improved gray Lattice Boltzmann model for simulating fluid flow in multi-scale porous media”: intrinsic links between LBE Brinkman schemes. Adv. Water Resour. (2014).  https://doi.org/10.1016/j.advwatres.2013.03.001 Google Scholar
  21. 21.
    Junk, M., Yang, Z.: Asymptotic analysis of lattice Boltzmann boundary conditions. J. Stat. Phys. 121, 3–35 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Junk, M., Klar, A., Luo, L.-S.: Asymptotic analysis of the lattice Boltzmann equation. J. Comput. Phys. 210, 676–704 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Buick, J., Greated, C.: Gravity in a lattice Boltzmann model. Phys. Rev. E. 61, 5307–5320 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, galilean invariance, and stability. Phys. Rev. E 61, 6546–6562 (2000)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Luo, L.-S., Liao, W., Chen, X., Peng, Y., Zhang, W.: Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations. Phys. Rev. E. 83, 056710 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    Guo, Z., Zheng, C., Shi, B.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65, 1–6 (2002)MATHGoogle Scholar
  27. 27.
    Ladd, A.J.C., Verberg, R.: Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104, 1191–1251 (2001)ADSMathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Silva, G., Semiao, V.: A study on the inclusion of body forces in the lattice Boltzmann BGK equation to recover steady-state hydrodynamics. Physica A 390, 1085–1095 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    Silva, G., Semiao, V.: First- and second-order forcing expansions in a lattice Boltzmann method reproducing isothermal hydrodynamics in artificial compressibility form. J. Fluid Mech. 698, 282–303 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Zou, Q., He, X.: On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids 9, 1591 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    He, X., Zou, Q., Luo, L.-S., Dembo, M.: Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. J. Stat. Phys. 87, 115–136 (1997)ADSMathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Zou, Q., Hou, S., Doolen, G.D.: Analytical solutions of the lattice Boltzmann BGK model. J. Stat. Phys. 81, 319–334 (1995)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Martys, N., Shan, X., Chen, H.: Evaluation of the external force term in the discrete Boltzmann equation. Phys. Rev. E 58, 6865 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    Luo, L.-S.: Theory of the lattice Boltzmann method: lattice Boltzmann models for non-ideal gases. Phys. Rev. E 62, 4982 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    D’Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.-S.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. Lond. A 360, 437–451 (2002)ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chen Chen
    • 1
  • Like Li
    • 2
  • Renwei Mei
    • 1
  • James F. Klausner
    • 3
  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Department of Mechanical EngineeringMississippi State UniversityMississippi StateUSA
  3. 3.Department of Mechanical EngineeringMichigan State UniversityEast LansingUSA

Personalised recommendations