Advertisement

Multiple-Relaxation-Time Lattice Boltzmann Model for Flow and Convective Heat Transfer in Channel with Porous Media

  • Kaoutar Bouarnouna
  • Abdelkader Boutra
  • Karim Ragui
  • Nabila Labsi
  • Youb Khaled Benkahla
Article
  • 57 Downloads

Abstract

In this paper, we investigate numerically the flow field and heat transfer of a Newtonian fluid flowing within a horizontal channel, partially filled with a porous medium. A thin deflector, considered as adiabatic, is inserted inside the channel to control the flow of the convective fluid. This numerical study is based on the multiple-relaxation-time Lattice Boltzmann method (MRT-LBM). The two-dimensional nine-velocity (D2Q9) model is adopted to solve the flow field, while the two-dimensional five-velocity (D2Q5) model is developed to solve the temperature field. A parametric study is carried out according to the Darcy number (10−1 ≤ Da ≤ 10−5), the Reynolds number (20 ≤ Re ≤ 600), the thickness of the porous substrate (0.1 ≤ S ≤ 0.8),the thickness of the deflector and its location (0.1 ≤ D ≤ 0.8 and L/4 ≤ xi ≤ 3L/4). The obtained results show the important effect of these parameters, which cannot be neglected, on both flow and the heat transfer structure, within this kind of channels.

Keywords

Fluid flow and heat transfer Porous blocks Channel Deflector Lattice Boltzmann method (MRT-LBM) 

List of Symbols

Cp

Specific heat of fluid

d

Dimensional thickness of deflector substrate, [m]

D

Dimensionless thickness of deflector substrate, (= d/H)

Da

Darcy number (= K/H2)

ei

Discrete particle velocity

fi

Density distribution function

g

Acceleration of gravity [m s−2]

H

Channel height [m]

L

Channel length [m]

Nu

Local Nusselt number

Pr

Prandtl number (= ν/α)

k

Thermal conductivity

K

Permeability of the porous medium (m2)

Re

Reynolds number (= u0H/ν)

s

Dimensional thickness of porous substrate, [m]

S

Dimensionless thickness of porous substrate (= s/H)

t

Time [s]

T

Temperature [K]

u

x-velocity component [m s−1]

v

y-velocity component [m s−1]

u0

Uniform velocity at the channel inlet [m s−1]

x, y

Cartesian coordinates [m]

xi

Distance of the deflector from the inlet [m]

Greek Symbols

α

Thermal diffusivity (= k/ρCp)

ε

Porosity of porous medium

μ

Fluid dynamic viscosity [kg m−1 s−1]

ν

Kinematic viscosity [m2 s−1]

θ

Dimensionless temperature \( ( = \,(T\, - \,T_{h} )/(Tm\, - \,T_{h} )) \)

ρ

Fluid density [kg m−3]

Subscripts

c

Cold

h

Hot

eq

Equilibrium

i

Direction Index

References

  1. 1.
    Icoz, T., Jaluriam, Y.: Numerical simulation of boundary conditions and the onset of instability in natural convection due to protruding thermal sources in an open rectangular channel. Num. Heat Trans. A 48, 831–847 (2005)CrossRefGoogle Scholar
  2. 2.
    Teamah, M.A., El-Maghlany, W.M., Khairat, M., Dawood, M.M.: Numerical simulation of laminar forced convection in horizontal pipe partially or completely filled with porous material. Int. J. Therm. Sci 50, 1512–1522 (2011)CrossRefGoogle Scholar
  3. 3.
    Kadano, P.G., Namara, M., Zanetti, G.: A poiseuille viscometer for lattice gas automata. Complex Syst. 1, 791–803 (1987)MathSciNetGoogle Scholar
  4. 4.
    Moussaoui, M.A., Jami, M., Mezrhab, A., Naji, H.: MRT-Lattice Boltzmann simulation of forced convection in a plane channel with an inclined square cylinder. Int. J. Therm. Sci. 49, 131–142 (2011)CrossRefGoogle Scholar
  5. 5.
    Nejat, A., Abdollahi, V., Vahidkhah, K.: Lattice Boltzmann simulation of non-Newtonian flows past confined cylinders. J. Nonnewton. Fluid Mech. 166, 689–697 (2011)CrossRefzbMATHGoogle Scholar
  6. 6.
    Guo, Z., Zhao, T.S.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. 66, 304–306 (2002)Google Scholar
  7. 7.
    Shokouhmand, H., Jam, F., Salimpour, M.R.: Simulation of laminar flow and convective heat transfer in conduits filled with porous media using Lattice Boltzmann method. Int. Commun. Heat Mass Trans. 36, 378–384 (2009)CrossRefGoogle Scholar
  8. 8.
    Lallemand, P., Luo, L.S.: Lattice Boltzmann method for moving boundaries. J. Comput. Phys. 184, 406–421 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Semma, E., El Ganaoui, M., Bennacer, R., Mohamad, A.A.: Investigation of flows in solidification by using the lattice Boltzmann method. Int. J. Therm. Sci. 47, 201–208 (2008)CrossRefGoogle Scholar
  10. 10.
    El-Ganaoui, M., Djebali, R.: Aptitude of a lattice Boltzmann method for evaluating transitional thresholds for low Prandtl number ows in enclosures. Comptes Rendus Mécanique 338, 85–96 (2010)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Addakiri, S., Semma, E., Elganaoui, M., Pateyron, B.: Numerical study of melting/solidification by a hybrid method coupling a lattice boltzmann and a finite volumes approaches. Defect Diffus. Forum 283–286, 477–482 (2009)CrossRefGoogle Scholar
  12. 12.
    Boutra, A., Ragui, K., Bennacer, R., Benkahla, Y.K.: Three-dimensional fluid flow simulation into a rectangular channel with partitions using the lattice-Boltzmann method. Eur. Phys. J. Appl. Phys. 74, 24612 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    Bejan, A.: Convection Heat Transfer. Wiley, New Jersey (2004)zbMATHGoogle Scholar
  14. 14.
    Vafai, K., Tien, C.L.: Boundary and inertia effects on flow and heat transfer in porous media. Int. J Heat Mass Transf. 24, 195–203 (1981)CrossRefzbMATHGoogle Scholar
  15. 15.
    Sung, H.J., Kim, S.Y., Hyun, M.J.: Forced convection from an isolated heat source in a channel with porous medium. Int. J. Heat Fluid Flow 16, 527–535 (1995)CrossRefGoogle Scholar
  16. 16.
    Nithiarasu, P., Seetharamu, K.N., Sundararajan, T.: Natural convective heat transfer in a fluid saturated variable porosity medium. Int. J. Heat Mass Transf. 40, 3955–3967 (1997)CrossRefzbMATHGoogle Scholar
  17. 17.
    Guo, Z., Zhao, T.S.: A lattice Boltzmann model for convection heat transfer in porous media. Num. Heat Transf. B 47, 157–177 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Hsu, C.T., Cheng, P.: Thermal dispersion in a porous medium. Int. J. Heat Mass Transf. 33, 1587–1597 (1990)CrossRefzbMATHGoogle Scholar
  19. 19.
    Jue, T.C.: Analysis of thermal convection in a fluid-saturated porous cavity with internal heat generation. Heat Mass Trans. 40, 83–89 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Beckermann, C., Viskanta, R.: Natural convection solid/liquid phase change in porous media. Int. J. Heat Mass Transf. 31, 35–46 (1988)CrossRefGoogle Scholar
  21. 21.
    Chang, W.J., Yang, D.F.: Natural convection for the melting of ice in porous media in a rectangular enclosure. Int. J. Heat Mass Transf. 39, 2335–2348 (1996)zbMATHGoogle Scholar
  22. 22.
    He, X., Lou, L.-S.: A priori derivation of the lattice Boltzmann equation. Phys. Rev. E 55(6), R6333–R6336 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    He, X., Luo, L.-S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56(6), 6811–6817 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases.I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    Qian, Y.H., d’Humières, D., Lallemand, P.: Lattice BGK models for Navier–Stokes equation. Europhys. Lett. 17, 479–484 (1992)ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30(1), 329–364 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lallemand, P., Luo, L.-S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61, 6546–6562 (2000)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Ginzburg, I., d’Humières, D.: Multi reflection boundary conditions for lattice Boltzmann models. Phys. Rev. E 68, 066614 (2003)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    d’Humières, D.: Generalized lattice Boltzmann equations. Prog. Aeronaut. Astronaut 159, 450–458 (1992)Google Scholar
  30. 30.
    Li, Q., He, Y.L., Tang, G.H., Tao, W.Q.: Improved axisymmetric la Qttice Boltzmann scheme. Phys. Rev. E 81, 056707 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    McCracken, M.E., Abraham, J.: Multiple-relaxation-time lattice-Boltzmann model for multiphase flow. Phys. Rev. E 71, 036–701 (2005)Google Scholar
  32. 32.
    He, Y.-L., Liu, Q., Li, Q., Tao, W.-Q.: Lattice Boltzmann methods for single-phase and solid–liquid phase-change heat transfert in porous media. Int. J. Heat Mass Trans. 73, 160–197 (2019)CrossRefGoogle Scholar
  33. 33.
    Lallemand, P., Luo, L.S.: Theory of the lattice Boltzmann method: dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61, 46–65 (2000)MathSciNetCrossRefGoogle Scholar
  34. 34.
    He, X., Luo, L.S.: Lattice Boltzmann model for the incompressible Navier–Stokes equation. J. Stat. Phys. 88, 927–944 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Mezrhab, A., Moussaoui, M.A., Jami, M., Naji, H., Bouzidi, M.H.: Double MRT thermal lattice Boltzmann method for simulating convective flows. Phys. Lett. A 374, 3499–3507 (2010)ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    Wang, J., Wang, D., Lallemand, P., Luo, L.-S.: Lattice Boltzmann simulations of thermal convective flows in two dimensions. Comput. Math Appl. 65, 262–286 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Jami, M., Moufekkir, F., Mezrhab, A., Fontaine, J.P.: New thermal MRT lattice Boltzmann method for simulations of convective flows. Int. J. Therm. Sci. 49, 131–142 (2016)Google Scholar
  38. 38.
    Alamyane, A.A., Ahmed, A., Mohamad, A.: Simulation of forced convection in a channel with extended surfaces by the lattice Boltzmann method. Comp. Math. Appl. 59, 2421–2430 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kaoutar Bouarnouna
    • 1
  • Abdelkader Boutra
    • 1
    • 2
  • Karim Ragui
    • 1
  • Nabila Labsi
    • 1
  • Youb Khaled Benkahla
    • 1
  1. 1.Laboratory of Transfer phenomenaUSTHBAlgiersAlgeria
  2. 2.Ecole Supérieure des Sciences Appliquées d’AlgerCasbahAlgeria

Personalised recommendations