Skip to main content
Log in

Chemical Equilibrium on Low Dimensional Supports: Connecting the Microscopic Mechanism to the Macroscopic Observations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Classical chemical thermodynamics predicts that the equilibrium composition of a reactive system is entirely defined by the equilibrium constants of the different reactions involved. In this paper we show that for nonlinear reactions taking place on a low-dimensional support this is not true anymore: the equilibrium state depends on the mechanistic details of the chemical processes, so that even two reactions having the same mean field kinetics and equilibrium constants can reach a different equilibrium composition, depending on the microscopic mechanism. We illustrate this point by simulations and mathematical analyses of a simple autocatalytic scheme, and we propose a theoretical route to discriminate between the different cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Soldatov, V.S.: Application of basic concepts of chemical thermodynamics to ion exchange equilibria. React. Funct. Polym. 27, 95 (1995)

    Article  Google Scholar 

  2. Leitner, J., Voňka, P., Mikulec, J.: Application of chemical thermodynamics to the description of processes of special inorganic materials preparation. J. Mater. Sci. 24, 1521 (1989)

    Article  ADS  Google Scholar 

  3. Züttel, A.: Hydrogen storage methods. Naturwissenschaften 91, 157 (2004)

    Article  ADS  Google Scholar 

  4. Hansen, A.C., Zhang, Q., Lyne, P.W.L.: Ethanol-diesel fuel blends: a review. Bioresour. Technol. 96, 277 (2005)

    Article  Google Scholar 

  5. Potekhin, A.Y., Chabrier, G.: Thermodynamic functions of dense plasmas: analytic approximations for astrophysical applications. Contrib. Plasma Phys. 50, 82 (2010)

    Article  ADS  Google Scholar 

  6. Sagi, E., Bekenstein, J.D.: Black holes in the tensor-vector-scalar theory of gravity and their thermodynamics. Phys. Rev. D 77, 024010 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  7. Trzaskowski, B., Adamowicz, L.: Chloromethane and dichloromethane decompositions inside nanotubes as models of reactions in confined space. Theor. Chem. Acc. 124, 95 (2009)

    Article  Google Scholar 

  8. Tretyakov, A., Provata, A., Nicolis, G.: Nonlinear chemical dynamics in low-dimensional lattices and fractal sets. J. Phys. Chem. 99, 2770 (1995)

    Article  Google Scholar 

  9. da Machado, M.S., Pérez-Pariente, J., Sastre, E., Cardoso, D., de Guereu, A.M.: Selective synthesis of glycerol monolaurate with zeolitic molecular sieves. Appl. Catal. A Gen. 203, 321 (2000)

    Article  Google Scholar 

  10. Lu, J., Aydin, C., Liang, A.J., Chen, C., Browning, N.D., Gates, B.C.: Site-isolated molecular iridium complex catalyst supported in the 1-dimensional channels of zeolite HSSZ-53: characterization by spectroscopy and aberration-corrected scanning transmission electron microscopy. ACS Catal. 2, 1002 (2012)

    Article  Google Scholar 

  11. Wang, N., Guan, L.: A chemical combination reaction within single-walled carbon nanotubes. Nanoscale 2, 893 (2010)

    Article  ADS  Google Scholar 

  12. Nair, N., Strano, M.S.: One-dimensional nanostructure-guided chain reactions: harmonic and anharmonic interactions. Phys. Rev. B 80, 174301 (2009)

    Article  ADS  Google Scholar 

  13. Prigogine, I., Lefever, R.: Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48, 1695 (1968)

    Article  ADS  Google Scholar 

  14. Bentz, J.L., Kozak, J.J., Abad, E., Nicolis, G.: Efficiency of encounter-controlled reaction between diffusing reactants in a finite lattice: topology and boundary effects. Phys. A 326, 55 (2003)

    Article  MATH  Google Scholar 

  15. Provata, A., Turner, J.W., Nicolis, G.: Nonlinear chemical dynamics in low dimensions: an exactly soluble model. J. Stat. Phys. 70, 1195 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  16. Herstein, I.N.: Topics in Algebra. Blaisdell Publishing Company, New York (1964)

    MATH  Google Scholar 

  17. Tsallis, C.: Possible generalization of Boltzmann-Gibbs entropy. J. Stat. Phys. 52, 479 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgments

We thank Astero Provata for stimulating discussions. D. B. is particularly thankful to Samuele Sommariva for suggesting the combinatorial importance of the pigeonhole principle on part of the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. De Decker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bullara, D., De Decker, Y. Chemical Equilibrium on Low Dimensional Supports: Connecting the Microscopic Mechanism to the Macroscopic Observations. J Stat Phys 161, 210–226 (2015). https://doi.org/10.1007/s10955-015-1314-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1314-x

Keywords

Navigation