Journal of Solution Chemistry

, Volume 48, Issue 11–12, pp 1488–1502 | Cite as

Kinetics and Thermodynamics of Sulfate Adsorption on Magnetite at Elevated Temperatures

  • Liyan QiuEmail author
  • Gordon R. Burton
  • Stephane Rousseau
  • Jing Qian


Magnetite is a major corrosion product of carbon steel that forms deposits in the steam generators in water-cooled nuclear reactors. Sulfate is present as an impurity in the steam generator feed water and accumulates in the magnetite deposits, leading to formation of acidic crevices, corrosion and stress corrosion cracking of steam generator tubing. Reliable adsorption data are required to understand material degradation of steam generator tubing. Sulfate adsorption onto magnetite has been studied at temperatures from 25 to 300 °C as a function of pH, and chloride and sulfate concentrations. The results show that adsorption decreases with increasing pH and ionic strength, and adsorption followed the Langmuir adsorption isotherm. Overall, sulfate adsorption onto magnetite is endothermic and the enthalpy of adsorption depends on the pH and ionic strength of the solutions. The adsorption behavior of sulfate onto magnetite is explained through outer-sphere and inner-sphere adsorption.


Magnetite Adsorption Sulfate High temperatures Enthalpy change 



This work was financially supported by Federal Science and Technology Programs at Canadian Nuclear Laboratories through the work package FST-51100.01.11.


  1. 1.
    Sara, B., Combrade, P., Erre, R., Benoit, R., Le Calvar, M.: Chemistry of sulphur in high temperature water reduction of sulphates. In: Proceedings of the 5th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems–Water Reactors, Monterey, CA, USA (1991)Google Scholar
  2. 2.
    Boursier, J.M., Dupin, M., Gossot, P., Rouillon, Y.: Contribution of surface analysis to the understanding of the degradation process. In: Proceedings of the 9th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, New Port Beach, CA, USA (1999)Google Scholar
  3. 3.
    Wijnja, H., Schulthess, C.P.: Vibrational spectroscopy study of selenate and sulphate adsorption mechanisms on Fe and Al (hydr)oxide surfaces. J. Colloid Interface Sci. 229, 286–297 (2000)CrossRefGoogle Scholar
  4. 4.
    Fukushi, K., Aoyama, K., Yang, C., Kitadai, N., Nakashima, S.: Surface complexation modeling for sulphate adsorption with in situ infrared spectroscopic observations. Appl. Geochem. 36, 92–103 (2013)CrossRefGoogle Scholar
  5. 5.
    Person, P., Lӧvgren, L.: Potentiometric and spectroscopic studies of sulphate complexation at the goethite–water interface. Geochim. Cosmochim. Acta 60, 2789–2799 (1996)CrossRefGoogle Scholar
  6. 6.
    Yates, D.E., Healy, T.W.: Mechanism of anion adsorption at the ferric and chromic oxide/water interfaces. J. Colloid Interface Sci. 52, 222–228 (1975)CrossRefGoogle Scholar
  7. 7.
    Charlet, L., Dise, N., Stumm, W.: Sulphate adsorption on a viable charge soil and on reference materials. Agr. Ecosyst. Environ. 47, 87–102 (1993)CrossRefGoogle Scholar
  8. 8.
    Juang, R.S., Wu, W.L.: Adsorption of sulphate and copper(II) on goethite in relation to the charges of zeta potentials. J. Colloid Interface Sci. 249, 22–29 (2002)CrossRefGoogle Scholar
  9. 9.
    Geelhoed, J.S., Hiemstra, T., van Riemsdijk, W.H.: Phosphate and sulphate adsorption on goethite: single anion and competitive adsorption. Geochim. Cosmochim. Acta 61, 2389–2396 (1997)CrossRefGoogle Scholar
  10. 10.
    Rahnemaie, R., Hiemstra, T., van Riemsdijk, W.H.: Inner- and outer-sphere complexation of ions at the goethite–solution interface. J. Colloid Interface Sci. 297, 379–388 (2006)CrossRefGoogle Scholar
  11. 11.
    Fukushi, K., Sverjensky, D.A.: A surface complexation model for sulfate and selenate on iron oxides consistent with spectroscopic and theoretical molecular evidence. Geochim. Cosmochim. Acta 71, 1–24 (2007)CrossRefGoogle Scholar
  12. 12.
    Pochard, I., Denoyel, R., Couchot, P., Foissy, A.: Adsorption of barium and calcium chloride onto negatively charged & #x03B1;-Fe2O3 particles. J. Colloid Interface Sci. 255, 27–35 (2002)CrossRefGoogle Scholar
  13. 13.
    Ridley, M.K., Machesky, M.L., Wesolowski, D.J., Palmer, D.A.: Calcium adsorption at the rutile–water Interface: a potentiometric study in NaCl media to 250 °C. Geochim. Cosmochim. Acta 63, 3087–3096 (1999)CrossRefGoogle Scholar
  14. 14.
    Qiu, L., Snaglewski, A.P.: Lithium adsorption on magnetite, lepidocrocite and maghemite at elevated temperatures. Nucl. Sci. Eng. 179, 199–210 (2015)CrossRefGoogle Scholar
  15. 15.
    Qiu, L., Guzonas, D.A., Webb, D.G.: Zirconium dioxide solubility in high temperature aqueous solutions. J. Solution Chem. 38, 857–867 (2009)CrossRefGoogle Scholar
  16. 16.
    Kersten, M., Vlasova, N.: The influence of temperature on selenate adsorption by goethite. Radiochim. Acta 101, 413–419 (2013)CrossRefGoogle Scholar
  17. 17.
    Kumari, M., Pittman Jr., C.U., Mohn, D.: Heavy metals [chromium(VI) and lead(II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. J. Colloid Interface Sci. 442, 120–132 (2015)CrossRefGoogle Scholar
  18. 18.
    Hao, L., Ouyang, T., Lai, L., Liu, Y.X., Chen, S., Hu, H., Chang, C.T., Wang, J.J.: Temperature effects on arsenate adsorption onto goethite and its preliminary application to arsenate removal from simulative geothermal water. RSC Adv. 4, 51984–51990 (2014)CrossRefGoogle Scholar
  19. 19.
    Cornell, R.M., Schwertmann, U.: The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. Wiley, New York (2000)Google Scholar
  20. 20.
    Ramachandran, V.S., Paroli, R.M., Beaudoin, J.J., Delgado, A.H.: Handbook of Thermal Analysis of Construction Materials. Noyes, New York (2003)Google Scholar
  21. 21.
    Zayani, L., Chehimi, D.B.H.: Synthesis and thermal behaviour of Na2SO4·MgSO4·4H2O. J. Therm. Anal. Calorim. 123, 1205–1211 (2016)CrossRefGoogle Scholar
  22. 22.
    Roonasi, P., Holmgren, A.: An ATR-FTIR study of sulphate sorption on magnetite: rate of adsorption, surface speciation and effect of calcium ions. J. Colloid Interface Sci. 333, 27–32 (2009)CrossRefGoogle Scholar
  23. 23.
    Ali, M.A., Dzombak, D.A.: Competitive sorption of simple organic acids and sulphate on goethite. Environ. Sci. Technol. 30, 1061–1071 (1996)CrossRefGoogle Scholar
  24. 24.
    Kosmulski, M.: Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Adv. Colloid Interface Sci. 152, 14–25 (2009)CrossRefGoogle Scholar
  25. 25.
    Mansour, C., Lefèvre, G., Pavageau, E.M., Catalette, H., Fèdoroff, M., Zanna, M.S.: Sorption of sulphate ions onto magnetite. J. Colloid Interface Sci. 331, 77–82 (2009)CrossRefGoogle Scholar
  26. 26.
    Peak, D., Ford, R.G., Sparks, D.L.: An in situ AFR-FTIR investigation of sulphate bonding mechanism on goethite. J. Colloid Interface Sci. 218, 289–299 (1999)CrossRefGoogle Scholar
  27. 27.
    Rietra, R.P.J.J., Hiemstra, T., Riemsdijk, H.V.: Sulphate adsorption on goethite. J. Colloid Interface Sci. 218, 511–521 (1999)CrossRefGoogle Scholar
  28. 28.
    Bentiss, F., Lebrini, M., Lagrenée, M.: Thermodynamic characterization of metal dissolution and inhibitor adsorption process in mild steel/2.5-bis(n-thienyl)-1.3,4-thiadiazoles/hydrochloric acid system. Corros. Sci. 47, 2915–2931 (2005)CrossRefGoogle Scholar
  29. 29.
    Saeed, M.M.: Adsorption profile and thermodynamic parameters of the preconcentration of Eu(III) on 2-thenoyltrifluoroacetone loaded polyurethane (PUR) foam. J. Radioanal. Nucl. Chem. 256, 73–80 (2003)CrossRefGoogle Scholar
  30. 30.
    Wesolowski, D.J., Palmer, D.A., Machesky, M.L., Anovitz, L.M., Hyde, K.E., Hayashi, K.I.: Solubility and surface charge characterization of magnetite in hydrothermal solutions. In: Tremaine, P.R., Hill, P.G., Irish, D.E., Balakrishnan, P.V. (eds.) Steam, Water, and Hydrothermal Systems: Physics and Chemistry Meeting the Needs of Industry, NRC Research Press, Ottawa, pp. 754–763 (2000)Google Scholar
  31. 31.
    Akcay, M.: Characterization and adsorption properties of tetrabutylammonium montmorillonite (TBAM) clay: thermodynamic and kinetic calculations. J. Colloid Interface Sci. 296, 16–21 (2006)CrossRefGoogle Scholar
  32. 32.
    Hayes, K.F., Papelis, C., Leckie, J.O.: Modeling ionic strength on anion adsorption at hydrous oxide/solution interface. J. Colloid Interface Sci. 125, 717–726 (1988)CrossRefGoogle Scholar
  33. 33.
    Palmer, D.A., Prini, R.F., Harvey, A.H.: Aqueous Systems at Elevated Temperatures and Pressures: Physical Chemistry in Water, Steam, and Hydrothermal Solutions. Elsevier Ltd., Amsterdam (2004)Google Scholar
  34. 34.
    Machesky, M.L.: Influence of temperature on ion adsorption by hydrous metal oxides (Chap. 22). Chemical Modeling of Aqueous Systems II. American Chemical Society, Washington, D.C. (1990)Google Scholar
  35. 35.
    Wesolowski, D.J., Machesky, M.L., Palmer, D.A., Anovitz, L.M.: Magnetite surface charge studies to 290 °C from in situ pH titrations. Chem. Geol. 167, 193–229 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Liyan Qiu
    • 1
    Email author
  • Gordon R. Burton
    • 1
  • Stephane Rousseau
    • 1
  • Jing Qian
    • 1
  1. 1.Canadian Nuclear LaboratoriesChalk RiverCanada

Personalised recommendations