Journal of Solution Chemistry

, Volume 48, Issue 10, pp 1413–1435 | Cite as

Investigation on Preferential Solvation, Transfer Properties and Solvent Effect of Sulfachloropyridazine in Aqueous Co-solvent Solutions of Some Alcohols

  • Li Xinbao
  • He Yating
  • Farajtabar Ali
  • Song Nan
  • Zhao HongkunEmail author


The effect of solvent on the solubility of sulfachloropyridazine was studied by making a correlation between the solubility values and solvent’s descriptors for solvent–solute and solvent–solvent interactions with the help of linear solvation energy relationships concept. From analysis of the molecular structure of sulfachloropyridazine, the variation of solubility was well explained in terms of the change in hydrogen bond basicity of mixtures when the mole fraction of methanol (or ethanol or isopropanol) increased in all aqueous binary solvent mixtures. The preferential solvation analysis of sulfachloropyridazine in the three aqueous co-solvent solutions of isopropanol, ethanol and methanol was carried out from solubility values through the method of inverse Kirkwood–Buff integrals. In water-rich compositions of the aqueous co-solvent solutions, the δx1,3 values are negative, indicating that the sulfachloropyridazine was solvated preferentially by the solvent water. In intermediate and alcohol-rich compositions, sulfachloropyridazine was preferentially solvated by the isopropanol, ethanol or methanol. The magnitude of preferential solvation of sulfachloropyridazine is greater in isopropanol solutions than in the other two co-solvent solutions. Analysis results of the KAT-LSER and IKBI methods indicate that the solute mainly acts as a Lewis acid through its –NH2 and > NH functionalities. In addition, the enthalpy, Gibbs energy and entropy of transfer were obtained, which demonstrated that the solubilization ability was more favorable in intermediate composition of the alcohols.


Sulfachloropyridazine Solvent effect Preferential solvation Transfer property 



  1. 1.
    Jouyban, A.: Handbook of Solubility Data for Pharmaceuticals. CRC Press, Boca Raton (2010)Google Scholar
  2. 2.
    Rubino, J.T.: Cosolvents and cosolvency. In: Swarbrick, J., Boylan, J.C. (eds.) Encyclopedia of Pharmaceutical Technology. Marcel Dekker, Inc., New York City (1988)Google Scholar
  3. 3.
    Marcus, Y.: On the preferential solvation of drugs and PAHs in binary solvent mixtures. J. Mol. Liq. 140, 61–67 (2008)CrossRefGoogle Scholar
  4. 4.
    Chen, J., Chen, G.Q., Cong, Y., Du, C.B., Zhao, H.K.: Solubility modelling and preferential solvation of paclobutrazol in co-solvent mixtures of (ethanol, n-propanol and 1,4-dioxane) + water. J. Chem. Thermodyn. 112, 249–258 (2017)CrossRefGoogle Scholar
  5. 5.
    Delgado, D.R., Peña, M.Á., Martínez, F., Jouyban, A., Acree Jr., W.E.: Further numerical analyses on the solubility of sulfapyridine in ethanol + water mixtures. Pharm. Sci. 22, 143–152 (2016)CrossRefGoogle Scholar
  6. 6.
    Jouyban, A., Acree Jr., W.E., Martínez, F.: Modelling the solubility and preferential solvation of gallic acid in cosolvent + water mixtures. J. Mol. Liq. 224, 502–506 (2016)CrossRefGoogle Scholar
  7. 7.
    Li, X.B., Wang, M.J., Du, C.B., Cong, Y., Zhao, H.K.: Preferential solvation of rosmarinic acid in binary solvent mixtures of ethanol + water and methanol + water according to the inverse Kirkwood–Buff integrals method. J. Mol. Liq. 240, 56–64 (2017)CrossRefGoogle Scholar
  8. 8.
    Dirany, A., Sirés, I., Oturan, N., Özcan, A., Oturan, M.A.: Electrochemical treatment of the antibiotic sulfachloropyridazine: kinetics, reaction pathways, and toxicity evolution. Environ. Sci. Technol. 46, 4074–4082 (2012)CrossRefGoogle Scholar
  9. 9.
    Wang, Y., Wang, L.S., Li, F.B., Liang, J.B., Li, Y.T., Dai, J., Loh, T.C., Ho, Y.W.: Effects of oxytetracycline and sulfachloropyridazine residues on the reductive activity of Shewanella decolorationis. J. Agric. Food Chem. 57, 5878–5883 (2009)CrossRefGoogle Scholar
  10. 10.
    Zhang, R.R., Gu, J., Wang, X.J., Qian, X., Duan, M.L., Sun, W., Zhang, Y.J., Li, H.C., Li, Y.: Relationships between sulfachloropyridazine sodium, zinc, and sulfonamide resistance genes during the anaerobic digestion of swine manure. Bioresour. Technol. 225, 343–348 (2017)CrossRefGoogle Scholar
  11. 11.
    Schauss, K., Focks, A., Heuer, H., Kotzerke, A., Schmitt, H., Thiele-Bruhn, S., Smalla, K., Wilke, B.M., Matthies, M., Amelung, W., Klasmeier, J., Schloter, M.: Analysis, fate and effects of the antibiotic sulfadiazine in soil ecosystems. TrAC Trends Anal. Chem. 28, 612–618 (2009)CrossRefGoogle Scholar
  12. 12.
    Hunter, W.J., Shaner, D.L.: Studies on removing sulfachloropyridazine from groundwater with microbial bioreactors. Curr. Microbiol. 62, 1560–1564 (2011)CrossRefGoogle Scholar
  13. 13.
    Schmitt, H., Van Beelen, P., Tolls, J., Van Leeuwen, C.L.: Pollution-induced community tolerance of soil microbial communities caused by the antibiotic sulfachloropyridazine. Environ. Sci. Technol. 38, 1148–1153 (2004)CrossRefGoogle Scholar
  14. 14.
    Srinivasan, P., Sarmah, A.K., Manley-Harris, M., Wilkins, A.L.: Sorption of sulfamethoxazole, sulfachloropyridazine and sulfamethazine onto six New Zealand dairy farm soils. In: Proceedings of the 19th World Congress of Soil Science: Soil Solutions for a Changing world. Brisbane, Australia, 1–6 Aug 2010Google Scholar
  15. 15.
    Li, R.R., Ye, S.F., Chen, Y.F., Jiang, M., Jin, Y.X., Jia, W.P., Chen, X.Y., Zhan, S.Y., Han, D.M.: solubility of sulfachloropyridazine in pure and binary solvent mixtures and investigation of intermolecular interactions. J. Chem. Eng. Data 63, 2002–2008 (2018)CrossRefGoogle Scholar
  16. 16.
    Marcus, Y.: Solvent Mixtures: Properties and Selective Solvation. Marcel Dekker, New York City (2002)Google Scholar
  17. 17.
    Marcus, Y.: Preferential solvation in mixed solvents. In: Smith, P.E., Matteoli, E., O’Connell, J.P. (eds.) Fluctuation Theory of Solutions: Applications in Chemistry, Chemical Engineering, and Biophysics. CRC Press, Boca Raton (2013)Google Scholar
  18. 18.
    Taft, R.W., Abboud, J.L.M., Kamlet, M.J., Abraham, M.H.: Linear solvation energy relations. J. Solution Chem. 14, 153–186 (1985)CrossRefGoogle Scholar
  19. 19.
    Kamlet, M.J., Abboud, J.L., Taft, R.W.: The solvatochromic comparison method. 6. The π* scale of solvent polarities. J. Am. Chem. Soc. 99, 6027–6038 (1977)CrossRefGoogle Scholar
  20. 20.
    Kamlet, M.J., Taft, R.W.: The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc. 98, 377–383 (1976)CrossRefGoogle Scholar
  21. 21.
    Taft, R.W., Kamlet, M.J.: The solvatochromic comparison method. II. The α-scale of solvent hydrogen-bond donor (HBD) acidities. J. Am. Chem. Soc. 98, 2886–2894 (1976)CrossRefGoogle Scholar
  22. 22.
    Kamlet, M.J., Doherty, R.M., Abboud, J.L.M., Abraham, M.H., Taft, R.W.: Linear solvation energy relationships: 36. Molecular properties governing solubilities of organic nonelectrolytes in water. J. Pharm. Sci. 75, 338–349 (1986)CrossRefGoogle Scholar
  23. 23.
    Maitra, A., Bagchi, S.: Study of solute–solvent and solvent–solvent interactions in pure and mixed binary solvents. J. Mol. Liq. 137, 131–137 (2008)CrossRefGoogle Scholar
  24. 24.
    Yousefinejad, S., Honarasa, F., Abbasitabar, F., Arianezhad, Z.: New LSER model based on solvent empirical parameters for the prediction and description of the solubility of Buckminsterfullerene in various solvents. J. Solution Chem. 42, 1620–1632 (2013)CrossRefGoogle Scholar
  25. 25.
    Buhvestov, U., Rived, F., Rafols, C., Bosch, E., Roses, M.: Solute–solvent and solvent–solvent interactions in binary solvent mixtures. Part 7. Comparison of the enhancement of the water structure in alcohol–water mixtures measured by solvatochromic indicators. J. Phys. Org. Chem. 11, 185–192 (1998)CrossRefGoogle Scholar
  26. 26.
    Roses, M., Buhvestov, U., Rafols, C., Rived, F., Bosch, E.: Solute–solvent and solvent–solvent interactions in binary solvent mixtures. Part 6. A quantitative measurement of the enhancement of the water structure in 2-methylpropan-2-ol-water and propan-2-ol-water mixtures by solvatochromic indicators. J. Chem. Soc. Perkin Trans. 2, 1341–1348 (1997)CrossRefGoogle Scholar
  27. 27.
    Marcus, Y.: The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev. 22, 409–416 (1993)CrossRefGoogle Scholar
  28. 28.
    Xu, R.J., Du, Y.Q., Wang, J., Farajtabar, A., Zhao, H.K.: Solubility modelling, solvent effect and preferential solvation of carbendazim in aqueous co-solvent mixtures of N,N-dimethylformamide, methanol, ethanol and n-propanol. J. Chem. Thermodyn. 128, 87–96 (2019)CrossRefGoogle Scholar
  29. 29.
    Hansen, C.M.: Hansen Solubility Parameters: A User’s Handbook. CRC Press, Boca Raton (2007)CrossRefGoogle Scholar
  30. 30.
    Ha, E.S., Ha, D.H., Kuk, D.H., Sim, W.Y., Baek, I.H., Kim, J.S., Park, H.J., Kim, M.S.: Solubility of cilostazol in the presence of polyethylene glycol 4000, polyethylene glycol 6000, polyvinylpyrrolidone K30, and poly(1-vinylpyrrolidone-co-vinyl acetate) at different temperatures. J. Chem. Thermodyn. 113, 6–10 (2017)CrossRefGoogle Scholar
  31. 31.
    Jiménez, D.M., Cárdenas, Z.J., Delgado, D.R., Jouyban, A., Martínez, F.: Solubility and solution thermodynamics of meloxicam in 1,4-dioxane and water mixtures. Ind. Eng. Chem. Res. 53, 16550–16558 (2014)CrossRefGoogle Scholar
  32. 32.
    Marcus, Y.: The Properties of Solvents. Wiley, Chichester (1998)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Environmental & Municipal EngineeringNorth China University of Water Resources and Electric PowerZhengzhouPeople’s Republic of China
  2. 2.Department of Chemistry, Jouybar BranchIslamic Azad UniversityJouybarIran
  3. 3.School of Chemistry & Chemical EngineeringYangZhou UniversityYangzhouPeople’s Republic of China

Personalised recommendations