Advertisement

Spectrophotometric Investigation of Cobalt Chloride Complex Formation in Aqueous Calcium Nitrate–Ammonium Nitrate Melts at T = 328.15 K: Influence of Water Content

  • Milan B. VranešEmail author
  • Snežana M. Papović
  • Slobodan B. Gadžurić
Article
  • 3 Downloads

Abstract

In this work, the absorption spectra of cobalt(II) nitrate and chloride complexes in the composition xCa(NO3)2–(1 – x)NH4NO3–H2O have been investigated in the 400–800 nm range of wavelength at T = 328.15 K and atmospheric pressure p = 101.3 kPa. Spectra were recorded in 0.3 Ca(NO3)2–0.7 NH4NO3–H2O solutions with variable water content (R = H2O/salt mole ratio; Rws = 1.0, 1.2, 1.6 and 2.0), and in xCa(NO3)2–(1 – x)NH4NO3–H2O (x = 0.3, 0.5 and 0.7) solutions where the H2O/salt mole ratio was kept constant (Rws = 2.0). The blue shift of the absorption maximum with increasing water content (Rws) suggests simultaneous coordination by water molecules and nitrate ions. From an analysis of the spectra, it can be concluded that the following complexes: [Co(NO3)4(H2O)2]2−, [Co(NO3)2Cl2]2− and [CoCl4]2− were formed. The overall stability constants of these complexes and the corresponding resolved species spectra were calculated at T = 328.15 K.

Keywords

Cobalt(II) complexes Water influence Spectrophotometry Calcium nitrate Ammonium nitrate 

Notes

Acknowledgements

This work was financially supported by the Ministry of Education, Science and Technological Development of Serbia under project contract ON172012.

Supplementary material

10953_2019_920_MOESM1_ESM.doc (9.6 mb)
Supplementary material 1 (DOC 9779 kb)

References

  1. 1.
    Øye, H.A., Gruen, D.M.: Octahedral absorption spectra of the dipositive 3d metal ions in molten aluminum chloride. Inorg. Chem. 3, 836–841 (1964).  https://doi.org/10.1021/ic50016a011 CrossRefGoogle Scholar
  2. 2.
    Øye, H.A., Gruen, D.M.: Cobalt(II) species in fused chloride solvents. Inorg. Chem. 4, 1173–1180 (1965).  https://doi.org/10.1021/ic50030a019 CrossRefGoogle Scholar
  3. 3.
    Gruen, D.M.: A preliminary spectrophotometric study of complex ions in fused salts. J. Inorg. Nucl. Chem. 4, 74 (1957).  https://doi.org/10.1016/0022-1902(57)80110-9 CrossRefGoogle Scholar
  4. 4.
    Tananaev, I.V., Dzhurinskii, B.F.: A spectrophotometry investigation of the chloride complexes of cobalt in melts. Dokl. Akad. Nauk SSSR 134, 1374–1377 (1960)Google Scholar
  5. 5.
    Tananaev, I.V., Dzhurinskii, B.F.: Interaction studies in Co(NO3)2—KBr and Co(NO3)2—KJ systems in a nitrate melt. Dokl. Akad. Nauk SSSR 135, 94–97 (1960)Google Scholar
  6. 6.
    Dickinson, J.R., Johnson, K.E.: Electronic spectrum of cobalt(II) in molten sulfates. J. Mol. Spectrosc. 36, 1–7 (1970).  https://doi.org/10.1016/0022-2852(70)90119-0 CrossRefGoogle Scholar
  7. 7.
    Barkatt, A., Angell, C.A.: On the use of structural probe ions for relaxation studies in glasses. I. Spectroscopic properties of cobalt(ll) in chloride-doped potassium nitrate-calcium nitrate glass. J. Phys. Chem. 75, 2192–2197 (1975).  https://doi.org/10.1021/j100587a027 CrossRefGoogle Scholar
  8. 8.
    Hemmingsson, S., Holmberg, B.: Stability and species spectra of cobalt(II) halide complexes in molten eutectic (K, Li)NO3 at 160 °C. Inorg. Chem. 19, 2242–2247 (1980).  https://doi.org/10.1021/ic50210a010 CrossRefGoogle Scholar
  9. 9.
    Petkovic, M., Seddon, K.R., Rebelo, L.P.N., Pereira, C.S.: Ionic liquids: a pathway to environmental acceptability. Chem. Soc. Rev. 40, 1383–1403 (2011).  https://doi.org/10.1039/C004968A CrossRefPubMedGoogle Scholar
  10. 10.
    May, B., Hönle, M., Heller, B., Greco, F., Bhuin, R., Steinrűck, H.-P., Maier, F.: Surface-induced changes in the thermochromic transformation of an ionic liquid cobalt thiocyanate complex. J. Phys. Chem. Lett. 8, 1137–1141 (2017).  https://doi.org/10.1021/acs.jpclett.7b00142 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kohno, Y., Cowan, M.G., Masuda, M., Bhowmick, I., Shores, M.P., Gin, D.L., Noble, R.D.: A cobalt(II) bis(salicylate)-based ionic liquid that shows thermoresponsive and selective water coordination. ChemComm 50, 6633–6636 (2014).  https://doi.org/10.1039/c4cc01023j CrossRefGoogle Scholar
  12. 12.
    Osborne, S.J., Wellens, S., Ward, C., Felton, S., Bowman, R.M., Binnemans, K., Swadźba-Kwaśny, M., Gunaratne, H.Q.N., Nockemann, P.: Thermochromism and switchable paramagnetism of cobalt(II) in thiocyanate ionic liquids. Dalton Trans. 44, 11286–11288 (2015).  https://doi.org/10.1039/c5dt01829c CrossRefPubMedGoogle Scholar
  13. 13.
    Banić, N., Vraneš, M., Abramović, B., Csanádi, J., Gadžurić, S.: Thermochromism, stability and thermodynamics of cobalt(II) complexes in newly synthesized nitrate based ionic liquid and its photostability. Dalton Trans. 44, 15515–15525 (2015).  https://doi.org/10.1039/C4DT01836B CrossRefGoogle Scholar
  14. 14.
    Lan, X., Mochida, T., Funasako, Y., Takahashi, K., Sakurai, T., Ohta, H.: Thermochromic magnetic ionic liquids from cationic nickel(II) complexes exhibiting intramolecular coordination equilibrium. Chem. Eur. J. 23, 823–831 (2017).  https://doi.org/10.1002/chem.201604420 CrossRefPubMedGoogle Scholar
  15. 15.
    Wei, X., Yu, L., Wang, D., Jin, X., Chen, G.Z.: Thermo-solvatochromism of chloro-nickel complexes in 1-hydroxyalkyl-3-methyl-imidazolium cation based ionic liquids. Green Chem. 10, 296–305 (2008).  https://doi.org/10.1039/B715763K CrossRefGoogle Scholar
  16. 16.
    Gadžurić, S., Vraneš, M., Dožić, S.: Thermochromic cobalt(II) chloro-complexes in different media: possible application for auto-regulated solar protection. Sol. Energ. Mat. Sol. Cells 105, 309–316 (2012).  https://doi.org/10.1016/j.solmat.2012.06.035 CrossRefGoogle Scholar
  17. 17.
    Libuś, W., Pilarczyk, M., Pastewski, R., Szuchicka, T.: Ionization equilibria of cobalt(II) chloride in dimethyl sulphoxide. Electrochim. Acta 27, 573–580 (1982).  https://doi.org/10.1016/0013-4686(82)85042-1 CrossRefGoogle Scholar
  18. 18.
    Pilarczyk, M., Grzybkowski, W., Klinszporn, L.: Stability, spectra and structure of the cobalt(II) chloride complexes in hexamethylphosphoramide solution at 25 °C. Polyhedron 7, 535–542 (1988).  https://doi.org/10.1016/S0277-5387(00)86329-9 CrossRefGoogle Scholar
  19. 19.
    Marinković, M., Nikolić, R., Savović, J., Gadžurić, S., Zsigrai, I.: Thermochromic complex compounds in phase change materials: possible application in an agricultural greenhouse. Sol. Energ. Mat. Sol. Cells 51, 401–411 (1998).  https://doi.org/10.1016/S0927-0248(97)00259-6 CrossRefGoogle Scholar
  20. 20.
    Savović, J., Nikolić, R.M., Kerridge, D.H.: Cobalt(II) chloride complexes in molten acetamide. Fluid Phase Equilibr. 118, 143–151 (1996).  https://doi.org/10.1016/0378-3812(95)02844-7 CrossRefGoogle Scholar
  21. 21.
    Savović, J., Nikolić, R., Veselinović, D.: Cobalt(II) chloride complex formation in acetamide–calcium nitrate tetrahydrate melts. J. Solution Chem. 33, 287–300 (2004).  https://doi.org/10.1023/B:JOSL.0000035361.89473.a4 CrossRefGoogle Scholar
  22. 22.
    Zsigrai, I., Gadžurić, S., Matijević, B.: Metal complex formation in melts of acetamide–ammonium nitrate–water mixtures. Part I. Cobalt(II) chloride complexes. Z. Naturforsch. 60a, 201–206 (2005).  https://doi.org/10.1515/zna-2005-0313 CrossRefGoogle Scholar
  23. 23.
    Zsigrai, I., Gadžurić, S., Nikolić, R., Nagy, L.: Electronic spectra and stability of cobalt halide complexes in molten calcium nitrate tetrahydrate. Z. Naturforsch. 59a, 602–608 (2004).  https://doi.org/10.1515/zna-2004-0910 CrossRefGoogle Scholar
  24. 24.
    Kerridge, D.H., Nikolić, R., Stojić, D.: Cobalt(II) halide complexes in aqueous ammonium nitrate–calcium nitrate melts: electronic spectra and solvent extraction. J. Chem. Soc. Dalton Trans. (1986).  https://doi.org/10.1039/DT9860001663 CrossRefGoogle Scholar
  25. 25.
    Vraneš, M., Gadžurić, S., Zsigrai, I.: Cobalt(II) halide complex formation in aqueous calcium nitrate–ammonium nitrate melts. I. Cobalt(II) chlorides. J. Mol. Liq. 135, 135–140 (2007).  https://doi.org/10.1016/j.molliq.2006.11.007 CrossRefGoogle Scholar
  26. 26.
    Vraneš, M., Gadžurić, S., Zsigrai, I., Dožić, S.: Absorption spectra of cobalt(II) chloride and nitrate complexes in aqueous calcium nitrate–ammonium nitrate melts: the influence of solvent composition. J. Mol. Liq. 152, 34–38 (2010).  https://doi.org/10.1016/j.molliq.2009.12.002 CrossRefGoogle Scholar
  27. 27.
    Vraneš, M., Gadžurić, S., Zsigrai, I.: Cobalt halide complex formation in aqueous calcium nitrate—ammonium nitrate melts. J. Mol. Liq. 145, 14–18 (2009).  https://doi.org/10.1016/j.molliq.2008.11.005 CrossRefGoogle Scholar
  28. 28.
    Cotton, F.A., Wilkinson, G.: Advanced Inorganic Chemistry, 4th edn. Wiley, New York (1988)Google Scholar
  29. 29.
    Proll, P.J., Sutcliffe, L.H., Walkley, J.: Species of Cobalt(II) in acetic acid. Part 1. Cobaltous acetate in the presence of water and of sodium acetate. J. Phys. Chem. 65, 455–460 (1961).  https://doi.org/10.1021/j100821a016 CrossRefGoogle Scholar
  30. 30.
    Beltrán, J.L., Codony, R., Pratt, M.D.: Evaluation of stability constants from multi-wavelength absorbance data: programme STAR. Anal. Chim. Acta 276, 441–454 (1993).  https://doi.org/10.1016/0003-2670(93)80415-H CrossRefGoogle Scholar
  31. 31.
    Zsigrai, I.J., Nikolić, R.M., Gal, I.J.: Thermodynamics of metal complex formation in aqueous melts of calcium dinitrate–ammonium nitrate. Part I. Cadmium(II) chlorides. J. Chem. Soc., Dalton Trans. (1976).  https://doi.org/10.1039/DT9760000879 CrossRefGoogle Scholar
  32. 32.
    Zsigrai, I.J., Gal, I.J., Nikolić, R.M.: Thermodynamics of metal complex formation in aqueous melts of calcium dinitrate–ammonium nitrate. Part 2. Cadmium(II) bromides. J. Chem. Soc., Dalton Trans. 549, 552 (1978).  https://doi.org/10.1039/DT9780000549 CrossRefGoogle Scholar
  33. 33.
    Smith, G.P.: Molten Salt Chemistry. Interscience. Wiley, London (1964)Google Scholar
  34. 34.
    Buffagni, S., Dunn, T.M.: The spectra of inorganic complexes in non-aqueous solvents. Part I. Chlorocobaltate ion and cobalt chloride. J. Chem. Soc. (1964).  https://doi.org/10.1039/JR9610005105 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Milan B. Vraneš
    • 1
    Email author
  • Snežana M. Papović
    • 1
  • Slobodan B. Gadžurić
    • 1
  1. 1.Faculty of Science, Department of Chemistry, Biochemistry and Environmental ProtectionUniversity of Novi SadNovi SadSerbia

Personalised recommendations