Advertisement

Journal of Solution Chemistry

, Volume 48, Issue 11–12, pp 1685–1715 | Cite as

Some New Contributions to the Theory of Polyelectrolyte Solutions: Prediction of Polyion Conformation and Interpretation of Some Deviations from Kohlrausch’s Law According to the Superposition Principle and the Dielectric Friction Effect

  • Jalel M’hallaEmail author
  • Sondes Boughammoura
  • Anis Ghazouani
Article
  • 43 Downloads

Abstract

Conductivity measurements in water and at 25 °C show that the variation of the equivalent conductivity ΛPX with the counter ion concentration CX of some PDDPX polyelectrolytes, poly(1,1-dimethyl-3,5-dimethylene piperidinium, X), for X ≡ Br, Cl, \({\text{NO}}_{3}^{ - }\) and F, is characterized by an inversion in Kohlraush’s law (i.e., \(\forall\)C, ΛPX < ΛPX′ if \(\lambda_{\text{X}}^{ \circ }\) > \(\lambda_{{\text{X}}^{\prime}}^{ \circ }\)), where \(\lambda_{\text{X}}^{ \circ }\) is the conductivity of the counter ion X at infinite dilution. This anomaly cannot be explained in the case of stretched polyions, by the dependence of ΛPX with the degree of dissociation αX, since αX remains quasi-constant at about 0.7 for CX < 2 × 10−2 mol·L−1. On the other hand, such a reversal implies that in the case of a coiled conformation, there is an increase in the ionic condensation, which is incompatible with hydrophobic folding. Similarly, hydrodynamic, electrophoretic and ionic frictions on these PDDPX polyelectrolytes cannot explain this inversion given their weak dependence with the nature of the counter ion X. In fact, for X ≡ Br, Cl, \({\text{NO}}_{3}^{ - }\), and for X ≡ F with CX > 10−3 mol·L−1, this anomaly occurs for PDDPZS+ polyions having a completely stretched chain conformation for which the translational dielectric friction effect on their charged groups becomes important to a variable degree depending on the nature of X. For PDDPF polyelectrolytes, this anomaly is amplified at high dilution because of possible synergy between the ionic dissociation and the hydrophobic character of the polyion, giving rise to a “pearl-necklace conformation” of effective length, L, decreasing with the dilution. In this work, we represent the conformation of polyions by an ellipsoid with a variable eccentricity γp, or by a chain of charged spheres with a variable group radius Rg, or by a pearl necklace model with a variable length L and a variable bead radius. The stability of the general configuration was formally studied according to a new approach based on the principle of superposition of ionic screening effects on the different charged groups.

Keywords

Conductivity Kohlrausch’s law Conformation stability Stretched polyion Dielectric friction 

Notes

Acknowledgements

The authors are grateful to the General Direction of Scientific Research of Tunisia (D.G.R.S.T) for assistance and supporting grants.

References

  1. 1.
    Onsager, L., Fuoss, R.M.: Irreversible processes in electrolytes. Diffusion, conductance and viscous flow in arbitrary mixtures of strong electrolytes. J. Phys. Chem. 36(11), 2689–2778 (1932)Google Scholar
  2. 2.
    Kohlrausch, F.: Notiz über die wärmeausdehnung des hartgummi. Progg. Annl. 169, 170 (1873)Google Scholar
  3. 3.
    Ghazouani, A., Boughammoura, S., M’halla, J.: New interpretation of the dependence of the conductibility of PSS and PAA polyions with the nature of the counterions. Colloid. Polym. Sci. 293, 2995–3011 (2015)Google Scholar
  4. 4.
    Manning, G.S.: Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J. Chem. Phys. 51, 924–933 (1969)Google Scholar
  5. 5.
    Manning, G.S.: Limiting laws and counterion condensation in polyelectrolyte solutions II. Self-diffusion of the small ions. J. Chem. Phys. 51, 934–935 (1969)Google Scholar
  6. 6.
    Manning, G.S.: Limiting law for the conductance of the rod model of a salt-free polyelectrolyte solution. J. Phys. Chem. 79(3), 262–265 (1975)Google Scholar
  7. 7.
    Manning, G.S.: Counterion binding in polyelectrolyte theory. Acc. Chem. Res. 12(12), 443–449 (1979)Google Scholar
  8. 8.
    M’halla, J.: Polyelectrolytic conductance limiting laws in conformity with the principles of equilibrium and nonequilibrium thermodynamics interdependence between conformation condensation and dielectric friction. J. Mol. Liq. 82, 183–218 (1999)Google Scholar
  9. 9.
    Vink, H.: Conductivity of polyelectrolyte in very dilute solutions. J. Chem. Soc. Faraday Trans. 77, 2439–2449 (1981)Google Scholar
  10. 10.
    Muthukumar, M.: 50th Anniversary perspective: a perspective on polyelectrolyte solutions. Macromolecules 50(24), 9528–9560 (2017)PubMedPubMedCentralGoogle Scholar
  11. 11.
    M’halla, J., Besbes, R., Bouazzi, R., Boughammoura, S.: About the singular behavior of the ionic condensation of sodium chondroitin sulfate conductivity study in water and water–dioxane mixture. Chem. Phys. 321, 10–24 (2006)Google Scholar
  12. 12.
    M’halla, J., Besbes, R., Bouazzi, R., Boughammoura, S.: Ionic condensation of sodium chondroitin sulfate in water–dioxane mixture. J. Mol. Liq. 130, 59–69 (2007)Google Scholar
  13. 13.
    Manning, G.S.: Limiting laws and counterion condensation in polyelectrolyte solutions 7. Electrophoretic mobility and conductance. J. Phys. Chem. 85, 1506–1515 (1981)Google Scholar
  14. 14.
    Boughammoura, S., M’halla, J.: Translational dielectric friction on a chain of charged spheres. Sci. World J. 2014, 1–15 (2014)Google Scholar
  15. 15.
    M’halla, J., Boughammoura, S.: Translation dielectric friction and mobility of ellipsoidal polyions. J. Mol. Liq. 157, 89–101 (2010)Google Scholar
  16. 16.
    Muthukumar, M.: Dynamics of polyelectrolyte solutions. J. Chem. Phys. 107, 2619–2635 (1997)Google Scholar
  17. 17.
    Dobrynin, A.V., Rubinstein, M.: Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym. Sci. 30, 1049–1118 (2005)Google Scholar
  18. 18.
    Boughammoura, S., M’halla, J.: Generalization of the model of Debye–Hückel according to a matrix approach. Application to the calculation of the potential of mean force in the case of electrolytes, polyelectrolytes and colloids. J. Mol. Liq. 214, 196–206 (2016)Google Scholar
  19. 19.
    Stillinger Jr., F.H., Lovett, R.: Ion-pair theory of concentrated electrolytes. J. Chem. Phys. 48, 3858–3868 (1968)Google Scholar
  20. 20.
    Katchalsky, A., Alexandrowicz, Z., Kedem, O.: In: Conway, B.E., Barradas, R.G. (eds.) Chemical Physics of Ionic Solutions. Wiley, New York (1966)Google Scholar
  21. 21.
    Blum, L.: Mean spherical model for asymmetric electrolytes. Mol. Phys. 30, 1529–1535 (1975)Google Scholar
  22. 22.
    Blum, L., Hoye, J.S.: Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function. J. Phys. Chem. 81, 1311–1313 (1977)Google Scholar
  23. 23.
    Robinson, R.A., Stokes, R.H.: Electrolyte Solutions. Butterworths Scientific Publications, London (1959)Google Scholar
  24. 24.
    Fuoss, R., Accascina, F.: Electrolytic conductance. Interscience Publishers, New York (1969)Google Scholar
  25. 25.
    Ben Mahmoud, S., Essafi, W., Abidelli, A., Rawiso, M., Boue, F.: Quenched polyelectrolytes with hydrophobicity independent from chemical charge fraction: a SANS and SAXS study. Arab. J. Chem. 10, 1001–1014 (2017)Google Scholar
  26. 26.
    Colby, R.H.: Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions. Rheol. Acta 49, 425–442 (2010)Google Scholar
  27. 27.
    Boughammoura, S., M’halla, J.: Estimation of the hydrophobic reactivity of SDS micelles by the use of BPh 4 anions. J. Mol. Liq. 175, 148–161 (2012)Google Scholar
  28. 28.
    Qian, H., Elson, E.L.: Quantitative study of polymer conformation and dynamics by single-particle tracking. Biophys. J. 76, 1598–1605 (1999)PubMedPubMedCentralGoogle Scholar
  29. 29.
    Hubbard, J.B., Douglas, F.: Hydrodynamic friction of arbitrarily shaped Brownian particles. Phys. Rev. E 47, 2983–2986 (1993)Google Scholar
  30. 30.
    Fuoss, R.M.: Dependence of the Walden product on dielectric constant. Proc. Natl. Acad. Sci. USA 45, 807 (1959)PubMedGoogle Scholar
  31. 31.
    Boyd, R.H.: Extension of Stokes’ Law for ionic motion to include the effect of dielectric relaxation. J. Chem. Phys. 35, 1281–1283 (1961)Google Scholar
  32. 32.
    Zwanzig, R.: Dielectric friction on a moving ion. J. Chem. Phys. 38, 1603–1605 (1963)Google Scholar
  33. 33.
    Hubbard, J.B., Onsager, L.: Dielectric dispersion and dielectric friction in electrolyte solutions I. J. Chem. Phys. 67, 4850–4857 (1977)Google Scholar
  34. 34.
    Hubbard, J.B.: Dielectric dispersion and dielectric friction in electrolyte solutions. II. J. Chem. Phys. 68, 1649–1664 (1978)Google Scholar
  35. 35.
    Nostro, L., Ninham, B.W.: Hofmeister phenomena: an update on ion specificity in biology. Chem. Rev. 112, 2286–2322 (2012)PubMedGoogle Scholar
  36. 36.
    Conway, B.E.: Ionic Hydration in Chemistry and Biophysics. Studies in Physical and Theoretical Chemistry, vol. 12. Elsevier Scientific Publishing Company, Amsterdam and New York (1981)Google Scholar
  37. 37.
    Rios, H.E., Sepulveda, L.N., Gamboa, C.I.: Electrical conductivity of cationic polyelectrolytes in aqueous solution. J. Polym. Sci. Pol. Phys. B. 28, 505–511 (1990)Google Scholar
  38. 38.
    Lahoiya, N.: Modélisation de la condensation ionique selon le modèle de la chaîne linéaire de sphères chargées. Master memory. Faculty of Sciences. University of Monastir, Tunisia (2015)Google Scholar
  39. 39.
    Nagaya, J., Minakata, A., Tanioka, A.: Conductance and counterion activity of ionene solutions. Langmuir 15(12), 4129–4134 (1999)Google Scholar
  40. 40.
    Luksic, M., Hribar-Lee, B., Vlachy, V.: Interplay of ion-specific and charge-density effects in aqueous solutions of weakly charged ionenes as revealed by electric-transport measurements. J. Phys. Chem. B 114(32), 10401–10408 (2010)PubMedGoogle Scholar
  41. 41.
    Zelikin, A.N., Davydova, O.V., Akritskaya, N.I., Kargov, S.I., Izumrudov, V.A.: Conformation of polyelectrolyte chains in dilute aqueous solutions investigated by conductometry. Influence of molecular mass and charge density of the chains on conformation of symmetrical aliphatic ionene bromides. J. Phys. Chem. B 108(1), 490–495 (2004)Google Scholar
  42. 42.
    Druchok, M., Malikova, N., Rollet, A.-L., Vlachy, V.: Counter-ion binding and mobility in the presence of hydrophobic polyions: combining molecular dynamics simulations and NMR. AIP Adv. 6, 065214 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesUniversity of MonastirMonastirTunisia

Personalised recommendations