Advertisement

Method of UV-Metric and pH-Metric Determination of Dissociation Constants of Ionizable Drugs: Valsartan

  • Milan MelounEmail author
  • Lucie Pilařová
  • Aneta Pfeiferová
  • Tomáš Pekárek
Article
  • 9 Downloads

Abstract

Valsartan is used for treating high blood pressure, congestive heart failure and to increase the chances of living longer after a heart attack and to reduce the mortality rate for people with left ventricular dysfunction following a heart attack. Regression analysis of the pH-spectra with REACTLAB and of the pH-titration curve with ESAB determined two close consecutive dissociation constants. MARVIN and ACD/Percepta predicted two protonation sites. In water a soluble anion L2− forms two sparingly soluble species LH, LH2. Although adjusted pH less affected the spectral changes in the chromophore, \({\text{p}}K_{a1}^{\text{T}}\) = 3.70 ± 0.12, \({\text{p}}K_{a2}^{\text{T}}\) = 4.82 ± 0.08 at 25 °C and \({\text{p}}K_{a1}^{\text{T}}\) = 3.44 ± 0.08, \({\text{p}}K_{a2}^{\text{T}}\) = 4.67 ± 0.02 at 37 °C in an aqueous phosphate buffer were determined. By regression analysis of potentiometric pH-titration curves and \({\text{p}}K_{a1}^{\text{T}}\) = 3.51 ± 0.01, \({\text{p}}K_{a2}^{\text{T}}\) = 4.63 ± 0.01, at 25 °C and \({\text{p}}K_{a1}^{\text{T}}\) = 3.44 ± 0.03, \({\text{p}}K_{a2}^{\text{T}}\) = 4.51 ± 0.03 at 37 °C in an aqueous medium were estimated. Positive enthalpy values ΔH0(pKa1) = 10.33 kJ·mol−1, ΔH0(pKa2) = 17.70 kJ·mol−1 showed that the dissociation process was endothermic. The standard state Gibbs energy changes are ΔG0(pKa1) = 20.03 kJ·mol−1, ΔG0(pKa2) = 26.43 kJ·mol−1 at 25 °C and the ΔS0 at 25 °C and 37 °C are (ΔS0(pKa1) = − 32.56 J·K−1·mol−1, ΔS0(pKa2) = − 29.26 J·K−1·mol−1 at 25 °C and ΔS0(pKa1) = − 30.01 J·K−1·mol−1, ΔS0(pKa2) = − 25.92 J·K−1·mol−1 at 37 °C.

Graphic Abstract

Keywords

Dissociation constants Valsartan Spectrophotometric titration pH-titration REACTLAB SQUAD84 ESAB 

Notes

Supplementary material

10953_2019_913_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 23 kb)
10953_2019_913_MOESM2_ESM.docx (1.8 mb)
Supplementary material 2 (DOCX 1804 kb)

References

  1. 1.
    Grujić, M., Popović, G., Nikolic, K., Agbaba, D.: Protolytic equilibria of sartans in micellar solutions of differently charged surfactans. J. Pharm. Sci. 105(8), 2444–2452 (2016)CrossRefGoogle Scholar
  2. 2.
    Lemke, T.L., Williams, D.A., Roche, V.F., Zito, S.W.: Foye´s Principles of Medicinal Chemistry. Lippincott Williams and Wilkins, Philadelphia (2013)Google Scholar
  3. 3.
    Doulton, T.W., He, F.J., MacGregor, G.A.: Systematic review of combined angiotensin–converting enzyme inhibition and angiotensin receptor blockade in hypertension. Hypertension 45, 880–886 (2005)CrossRefGoogle Scholar
  4. 4.
    Brunton, L.L., Chabner, B., Knollmann, B.C.: Goodman and Gilman’s The Pharmacological Basis of Therapeutics. McGraw-Hill, New York (2011)Google Scholar
  5. 5.
    Inzucchi, S.E., Bergenstal, R.M., Buse, J.B., Diamant, M., Ferrannini, E., Nauck, M., Peters, A.L., Tsapas, A., Wender, R.: Management of hyperglycemia in Type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American diabetes association and the european association for the study of diabetes. Diabetologia 55(6), 1577–1596 (2015)CrossRefGoogle Scholar
  6. 6.
    Katzung, B.G., Masters, S.B., Trevor, A.J.: Basic and Clinical Pharmacology, Chapter 11, vol. 13. McGraw-Hill Education, New York (2012)Google Scholar
  7. 7.
    Manallack, D.T., Prankerd, R.J., Nassta, G.C., Ursu, O., Oprea, T.I., Chalmers, D.K.: A chemogenomic analysis of ionization constants–implications for drug discovery. Chem. Med. Chem. 8, 242–255 (2013)CrossRefGoogle Scholar
  8. 8.
    De Stefano, C., Princi, P., Rigano, C., Sammartano, S.: Computer analysis of equilibrium data in solution ESAB2M: an improved version of the ESAB program. Annali Di Chimica 77(7–8), 643–675 (1987)Google Scholar
  9. 9.
    Gans, P., Sabatini, A., Vacca, A.: Hyperquad computer-program suite. Abstr. Pap. Am. Chem. Soc. 219, U763–U763 (2000)Google Scholar
  10. 10.
    Gans, P., Sabatini, A., Vacca, A.: Simultaneous calculation of equilibrium constants and standard formation enthalpies from calorimetric data for systems with multiple equilibria in solution. J. Solution Chem. 37(4), 467–476 (2008)CrossRefGoogle Scholar
  11. 11.
    Meloun, M., Havel, J., Högfeldt, E.: Computation of solution equilibria: a guide to methods in potentiometry, extraction, and spectrophotometry. Ellis Horwood series in analytical chemistry. Ellis Horwood, Chichester (1988)Google Scholar
  12. 12.
    Meloun, M., Militký, J., Forina, M.: PC-Aided Regression and Related Methods. Chemometrics for Analytical Chemistry, vol. 2. Ellis Horwood, Chichester (1994)Google Scholar
  13. 13.
    Meloun, M., Militký, J., Forina, M.: PC-Aided Statistical Data Analysis. Chemometrics for Analytical Chemistry, vol. 1. Ellis Horwood, Chichester (1992)Google Scholar
  14. 14.
    Allen, R.I., Box, K.J., Comer, J.E.A., Peake, C., Tam, K.Y.: Multiwavelength spectrophotometric determination of acid dissociation constants of ionizable drugs. J. Pharm. Biomed. Anal. 17(4–5), 699–712 (1998)CrossRefGoogle Scholar
  15. 15.
    Hartley, F.R., Burgess, C., Alcock, R.M.: Solution Equilibria. Ellis Horwood, Chichester (1980)Google Scholar
  16. 16.
    Leggett, D.J., McBryde, W.A.E.: General computer program for the computation of stability constants from absorbance data. Anal. Chem. 47(7), 1065–1070 (1975)CrossRefGoogle Scholar
  17. 17.
    Kankare, Jouko J.: Computation of equilibrium constants for multicomponent systems from spectrophotometric data. Anal. Chem. 42(12), 1322–1326 (1970)CrossRefGoogle Scholar
  18. 18.
    ACD/Labs pKa Predictor 3.0. In: Inc., A.C.D. (ed.). Toronto, Canada (2011)Google Scholar
  19. 19.
    Balogh, G.T., Gyarmati, B., Nagy, B., Molnar, L., Keseru, G.M.: Comparative evaluation of in silico pK a prediction tools on the gold standard dataset. QSAR Comb. Sci. 28(10), 1148–1155 (2009)CrossRefGoogle Scholar
  20. 20.
    Balogh, G.T., Tarcsay, A., Keseru, G.M.: Comparative evaluation of pK a prediction tools on a drug discovery dataset. J. Pharm. Biomed. Anal. 67–68, 63–70 (2012)CrossRefGoogle Scholar
  21. 21.
    Ribeiro, A.R., Schmidt, T.C.: Determination of acid dissociation constants (pK a) of cephalosporin antibiotics: computational and experimental approaches. Chemosphere 169, 524–533 (2017)CrossRefGoogle Scholar
  22. 22.
    ChemAxon: MarvinSketch 16.5.2.0. In, vol. 16.5.2.0. ChemAxon, Budapest, Hungary (2013)Google Scholar
  23. 23.
    Hansen, N.T., Kouskoumvekaki, I., Jorgensen, F.S., Brunak, S., Jonsdottir, S.O.: Prediction of pH-dependent aqueous solubility of druglike molecules. J. Chem. Inf. Model. 46(6), 2601–2609 (2006)CrossRefGoogle Scholar
  24. 24.
    Liao, C.Z., Nicklaus, M.C.: Comparison of nine programs predicting pK(a) values of pharmaceutical substances. J. Chem. Inf. Model. 49(12), 2801–2812 (2009)CrossRefGoogle Scholar
  25. 25.
    Manchester, J., Walkup, G., Rivin, O., You, Z.P.: Evaluation of pK(a) estimation methods on 211 drug like compounds. J. Chem. Inf. Model. 50(4), 565–571 (2010)CrossRefGoogle Scholar
  26. 26.
    Meloun, M., Bordovska, S., Syrovy, T., Vrana, A.: Tutorial on a chemical model building by least-squares non-linear regression of multiwavelength spectrophotometric pH-titration data. Anal. Chim. Acta 580(1), 107–121 (2006)CrossRefGoogle Scholar
  27. 27.
    Meloun, M., Pilařová, L., Bureš, F., Pekárek, T.: Multiple dissociation constants of the interpirdine hydrochloride using regression of multiwavelength spectrophotometric pH-titration data. J. Mol. Liq. 261, 480–491 (2018)CrossRefGoogle Scholar
  28. 28.
    Meloun, M., Čápová, A., Pilařová, L., Pekárek, T.: Multiwavelength UV-metric and pH-metric determination of the multiple dissociation constants of the Lesinurad. J. Pharm. Biomed. Anal. 158, 236–246 (2018)CrossRefGoogle Scholar
  29. 29.
    Meloun, M., Nečasová, V., Javůrek, M., Pekárek, T.: The dissociation constants of the cytostatic bosutinib by nonlinear least-squares regression of multiwavelength spectrophotometric and potentiometric pH-titration data. J. Pharm. Biomed. Anal. 120, 158–167 (2016)CrossRefGoogle Scholar
  30. 30.
    Meloun, M., Syrový, T., Bordovská, S., Vrána, A.: Reliability and uncertainty in the estimation of pK (a) by least squares nonlinear regression analysis of multiwavelength spectrophotometric pH titration data. Anal. Bioanal. Chem. 387(3), 941–955 (2007)CrossRefGoogle Scholar
  31. 31.
    Meloun, M., Ferenčíková, Z.: Enthalpy–entropy compensation for some drugs dissociation in aqueous solutions. Fluid Phase Equilibra 328, 31–41 (2012)CrossRefGoogle Scholar
  32. 32.
    Maeder, M., King, P.: Analysis of Chemical Processes, Determination of the Reaction Mechanism and Fitting of Equilibrium and Rate Constants. In: Varmuza, K. (ed.) InTech, London (2012)Google Scholar
  33. 33.
    Meloun, M., Čapek, J., Mikšík, P., Brereton, R.G.: Critical comparison of methods predicting the number of components in spectroscopic data. Anal. Chim. Acta 423(1), 51–68 (2000)CrossRefGoogle Scholar
  34. 34.
    ORIGIN. OriginLab Corporation, One Roundhouse Plaza, Suite 303, Northampton, MA 01060, USAGoogle Scholar
  35. 35.
    Meloun, M., Militký, J.: Statistical Data Analysis: A Practical Guide, Complete with 1250 Exercises and Answer Key on CD, 1st edn. Woodhead Publishing Ltd., New Delhi (2011)CrossRefGoogle Scholar
  36. 36.
    Meloun, M., Bartos, M., Högfeldt, E.: Multiparametric curve fitting.13. Reliability of formation-constants determined by analysis of potentiometric titration data. Talanta 35(12), 981–991 (1988)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Analytical ChemistryUniversity of PardubicePardubiceCzech Republic
  2. 2.Zentiva k.sPragueCzech Republic

Personalised recommendations