Advertisement

Native and Magnetic Oxide Nanoparticles (Fe3O4) Impregnated Bentonite Clays as Economic Adsorbents for Cr(III) Removal

  • Khizar Hussain ShahEmail author
  • Shahid Ali
  • Muhammad Waseem
  • Faheem Shah
  • Muhammad Fahad
  • Shabnam Shahida
  • Asad Muhammad Khan
  • Abdur Rahman Khan
Article
  • 12 Downloads

Abstract

The present investigation describes the adsorption capability of native and magnetic oxide (Fe3O4) impregnated bentonite clays for the adsorption of Cr(III) from aqueous solutions. The characterization of native bentonite as well as the impregnated bentonite was performed by PZC, SEM, BET, XRD and FTIR spectroscopy. The results proved that magnetized bentonite with high specific surface area provides high affinity and fast kinetics for the uptake of Cr(III). In the case of lower metal ion concentration in working solutions, the adsorption efficiency of the impregnated form was better than the native form. The effects of pH, contact time, temperature and initial metal ion concentration on overall adsorption efficiency were determined in detail. The equilibrium data was interpreted by linear forms of Langmuir, Fruendlich and Dubinin–Radushkevich isotherm models. Maximum adsorption capacity (Xm) for Cr(III) uptake was obtained as 1.25 and 1.28 mmol·g−1 for native and impregnated bentonite respectively. The apparent mean free energy of adsorption (E) determined from the DRK model was less than 8 kJ·mole−1 indicating that the Cr(III) adsorption on both adsorbents was physisorption in nature. Two different kinetic models, pseudo first and pseudo second order models were subjected to evaluate the kinetic data and reaction mechanism.

Keywords

Bentonite Magnetic oxide Characterization Cr(III) Adsorption Langmuir 

Notes

Supplementary material

10953_2019_912_MOESM1_ESM.doc (62 kb)
Supplementary material 1 (DOC 62 kb)

References

  1. 1.
    Zehhaf, A., Benyoucef, A., Quijada, C., Taleb, S., Morallon, E.: Algerian natural montmorillonites for arsenic(III) removal in aqueous solution. IJEST 12, 595–602 (2015)Google Scholar
  2. 2.
    Luo, X., Liu, H., Huang, G., Li, Y., Zhao, Y., Li, X.: Remediation of arsenic-contaminated groundwater using media-injected permeable reactive barriers with a modified montmorillonite: sand tank studies. Environ. Sci. Pollut. Res. 23, 870–877 (2016)CrossRefGoogle Scholar
  3. 3.
    Jarup, L.: Hazards of heavy metal contamination. Br. Med. Bull. 68, 167–182 (2003)CrossRefGoogle Scholar
  4. 4.
    Shupack, S.I.: The chemistry of chromium and some resulting analytical problems. Environ. Health Perspect. 92, 7–11 (1991)CrossRefGoogle Scholar
  5. 5.
    Rengaraj, S., Yeon, K.H., Moon, S.H.: Removal of chromium from water and wastewater by ion exchange resins. J. Hazard. Mater. 87, 273–287 (2001)CrossRefGoogle Scholar
  6. 6.
    Tiravanti, G., Petruzzelli, D., Passino, R.: Pretreatment of tannery waste waters by an ion exchange process for Cr(III) removal and recovery. Water Sci. Technol. 36, 197–207 (1997)CrossRefGoogle Scholar
  7. 7.
    Kanagaraj, J., Chandra, B.N.K., Mandal, A.B.: Recovery and reuse of chromium from chrome tanning waste water aiming towards zero discharge of pollution. J. Clean. Prod. 16, 1807–1813 (2008)CrossRefGoogle Scholar
  8. 8.
    Edebali, S., Pehlivan, E.: Evaluation of Cr(III) by ion-exchange resins from aqueous solution: equilibrium, thermodynamics and kinetics. Desalin. Water. Treat. 52, 7143–7153 (2014)CrossRefGoogle Scholar
  9. 9.
    Ouadjenia-Marouf, D.F., Marouf, R., Schott, J., Yahiaoui, A.: Removal of Cu(II), Cd(II) and Cr(III) ions from aqueous solution by dam silt. Arab. J. Chem. 6, 401–406 (2013)CrossRefGoogle Scholar
  10. 10.
    Alvarado, L., Torres, I.R., Chen, A.: Integration of ion exchange and electrodeionization as a new approach for the continuous treatment of hexavalent chromium wastewater. Sep. Purif. Technol. 105, 55–62 (2013)CrossRefGoogle Scholar
  11. 11.
    Lutfullah, Rashid, M., Haseen, U., Rahman, N.: An advanced Cr(III) selective nano-composite cation exchanger: synthesis, characterization and sorption characteristics. J. Ind. Eng. Chem. 20, 809–817 (2013)CrossRefGoogle Scholar
  12. 12.
    Aminah, S.: Bentonite-based functional material for chromium species adsorption. Int. J. Appl. Sci. Technol. 7, 77–86 (2017)Google Scholar
  13. 13.
    Aljlil, B.S.A.: Kinetics of adsorption of chromium and lead ions on bentonite clay using novel internal parallel model. RJET 9, 1–16 (2015)Google Scholar
  14. 14.
    Alvarez-Ayuso, E., Garćia-Sánchez, A.: Removal of heavy metals from waste waters by natural and Na-exchanged bentonites. Clays Clay Miner. 51(5), 475–480 (2003)CrossRefGoogle Scholar
  15. 15.
    Ahmet Sari, M.T., Mustafa, S.: Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtek clay. J. Hazard. Mater. 144, 41–46 (2007)CrossRefGoogle Scholar
  16. 16.
    Ajemba, R.O.: Kinetics and equilibrium modeling of lead(II) and chromium(III) ions’ adsorption onto clay from Kono-Bowe Nigeria. Turk. J. Eng. Environ. Sci. 38, 455–479 (2014)CrossRefGoogle Scholar
  17. 17.
    Netoa, A.F.D.A., Vieira, M.G.A., Silva, M.G.C.D.: Cu(II) adsorption on modified bentonitic clays: different isotherm behaviors in static and dynamic systems. Mat. Res. 15, 114–124 (2012)CrossRefGoogle Scholar
  18. 18.
    Srinivasan, R.: Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water. Adv. Mater. Sci. Eng. 2011, 872531 (2011)CrossRefGoogle Scholar
  19. 19.
    Mockovciakova, A., Orolínova, Z., Skvarla, J.: Enhancement of the bentonite sorption properties. J. Hazard. Mater. 180, 274–281 (2010)CrossRefGoogle Scholar
  20. 20.
    Makarchuk, O.V., Dontsova, T.A., Astrelin, I.M.: Magnetic nanocomposites as efficient sorption materials for removing dyes from aqueous solutions. Nanoscale Res. Lett. 11, 161 (2016)CrossRefGoogle Scholar
  21. 21.
    Mockovciakova, A., Orolinova, Z.: Adsorption properties of modified bentonite clay. Chem. Technol. 50, 47–50 (2009)Google Scholar
  22. 22.
    Panneerselvam, P., Morad, N., Tan, K.A.: Megnetic nanoartile impregnated onto tea waste for the removal of nickel (II) from aqueous solution. J. Hazard. Mater. 186, 160–168 (2011)CrossRefGoogle Scholar
  23. 23.
    Yaghoobi-Rahni, S., Rezaei, B., Mirghaffari, N.: Bentonite surface modification and characterization for high selective phosphate adsorption from aqueous media and its application for wastewater treatments. J. Water Reuse Desalin. 7, 175–186 (2017)CrossRefGoogle Scholar
  24. 24.
    Ahmadgurabi, N.G., Koohi, A.D., Pirbazari, A.E.: Fabrication, characterization, regeneration and application of nanomagnetic Fe3O4 fish scale as a bio-adsorbent for removal of methylene blue. J. Water. Environ. Nanotechnol. 3, 219–234 (2018)Google Scholar
  25. 25.
    Veres, J., Orolinova, Z.: Study of the treated and magnetically modified bentonite as possible sorbents of heavy metals. Acta. Montan. Slovaca. 14, 152–155 (2009)Google Scholar
  26. 26.
    Liu, Y., Chen, L., Yang, Y., Li, M., Li, Y., Dong, Y.: The efficient removal of Cu(II) from aqueous solutions by Fe3O4 hexadecyl trimethoxy silane chitosan composites. J. Mol. Liq. 219, 341–349 (2016)CrossRefGoogle Scholar
  27. 27.
    Gupta, V.K., Agarwal, S., Saleh, T.A.: Chromium removal by combining the megnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res. 45, 2207–2212 (2011)CrossRefGoogle Scholar
  28. 28.
    Zhuang, S., Wang, J.: Removal of cobalt ion from aqueous solution using magnetic graphene oxide/chitosan composite. Environ. Prog. Sustain Energy. 38, S32–S41 (2019)CrossRefGoogle Scholar
  29. 29.
    Hashem, F.S.: Removal of methylene blue by magnetite covered bentonite nano-composite. Eur. Chem. Bull. 2, 524–529 (2013)Google Scholar
  30. 30.
    Al-Farhan, B.S.: Removal of Cd+2 and Pb+2 ions from aqueous solutions using bentonite-modified magnetic nanoparticles. Int. J. Nano. Chem. 2, 27–31 (2016)CrossRefGoogle Scholar
  31. 31.
    Sharma, Y.C., Srivastava, V., Weng, C.H., Upadhyay, S.N.: Removal of Cr(VI) from wastewater by adsorption on iron nanoparticles. Can. J. Chem. Eng. 87, 921–929 (2009)CrossRefGoogle Scholar
  32. 32.
    Parel, S., Persson, I., Guel, B., Lundberg, D., Zerbo, L., Kam, S., Traore, K.: Heavy metal removal from aqueous solutions by sorption using natural clays from Burkina Faso. Afr. J. Biotechnol. 11, 10395–10406 (2012)Google Scholar
  33. 33.
    Orolinov, Z., Mockovciakov, A.: Structural study of bentonite/iron composites. Mater. Chem. Phys. 114, 956–961 (2009)CrossRefGoogle Scholar
  34. 34.
    de Oliveira, C.I.R., Rocha, M.C.G., da Silva, A.L.N., Bertolino, L.C.: Characterization of bentonite clays from Cubati, Paraíba northeast of Brazil. Ceramica 62, 272–277 (2016)CrossRefGoogle Scholar
  35. 35.
    Nayak, P.S., Singh, B.K.: Instrumental characterization of clay by XRD, XRF and FTIR. Bull. Mater. Sci. 30, 235–238 (2007)CrossRefGoogle Scholar
  36. 36.
    Ravindra, R.T., Kaneko, S., Endo, T., Lakshmi, R.S.: Spectroscopic characterization of bentonite. J. Laser Opt. Photonics 4, 1000171 (2017)Google Scholar
  37. 37.
    Das, B., Mondal, K., Roy, P., Chattaraj, S.: Equilibrium, kinetic and thermodynamic study on chromium (VI) removal from aqueous solution using Pistia Stratiotes biomass Chem. Sci. Trans. 2, 85–104 (2013)Google Scholar
  38. 38.
    Mahmood, T., Saddique, M.T., Naeem, A., Mustafa, S., Zeb, N., Shah, K.H., Waseem, M.: Kinetic and thermodynamic study of Cd(II), Co(II) and Zn(II) adsorption from aqueous solution by NiO. Chem. Eng. J. 171, 935–940 (2011)CrossRefGoogle Scholar
  39. 39.
    Akpomie, K.G., Odewole, O.A., Ibeji, C.U., Okagu, O.D., Agboola, I.I.: Enhanced sorption of trivalent chromium unto novel cassava peel modified kaolinite clay. Der. Pharm. Chem. 9, 48–55 (2017)Google Scholar
  40. 40.
    Rengaraj, S., Yeon, K.H., Kang, S.Y., Lee, J.U., Kim, K.W., Moon, S.H.: Studies on adsorptive removal of Co(II), Cr(III) and Ni(II) by IRN77 cation-exchange resin. J. Hazards. Mater. B92, 185–198 (2002)Google Scholar
  41. 41.
    Jamali-Behnamm, F., Najafpoor, A.A., Davoudi, M., Rohani-Bastami, T., Alidadi, H., Esmaily, H., Dolatabadi, M.: Adsorptive removal of arsenic from aqueous solutions using magnetite nanoparticles and silica-coated magnetite nanoparticles. Environ. Prog. Sustain. Energy 37, 951–960 (2018)CrossRefGoogle Scholar
  42. 42.
    Gupta, N., Kushwaha, A.K., Chattopadhyaya, M.C.: Application of potato (Solanum tuberosum) plant wastes for the removal of methylene blue and malachite green dye from aqueous solution. Arab. J. Chem. 9, S707–S716 (2016)CrossRefGoogle Scholar
  43. 43.
    Krishnan, K.A., Sreejalekshmi, K.G., Baiju, R.S.: Nickel(II) adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith. Bioresour. Technol. 102, 10239–10247 (2011)CrossRefGoogle Scholar
  44. 44.
    Marinovic, S., Ajdukovic, M.J., Jovic-Jovicic, N.J., Mudrinic, T.M., Bojana, M., Nedic-Vasiljevi, B.N., Bankovic, P.T., Milutinovic-Nikolic, A.D.: Adsorption of strontium on different sodium enriched bentonites. J. Serb. Chem. Soc. 82, 449–463 (2017)CrossRefGoogle Scholar
  45. 45.
    Oskui, F.N., Aghdasinia, H., Sorkhabi, M.G.: Adsorption of Cr(III) using Iranian natural nano clay: applicable to tannery wastewater: equilibrium, kinetic, and thermodynamic. Environ. Earth Sci. 78, 106 (2019)CrossRefGoogle Scholar
  46. 46.
    Ouadjenia-Marouf, F., Marouf, R., Schott, J., Yahiaoui, A.: Removal of Cu(II), Cd(II) and Cr(III) ions from aqueous solution by dam silt. Arab. J. Chem. 6, 401–406 (2013)CrossRefGoogle Scholar
  47. 47.
    Kocaoba, S.: Adsorption of Cd(II), Cr(III) and Mn(II) on natural sepiolite. Desalination 244, 24–30 (2009)CrossRefGoogle Scholar
  48. 48.
    Chakir, A., Bessiere, J., Kacemi, K.E., Marouf, B.: A comparative study of the removal of trivalent chromium from aqueous solutions by bentonite and expanded perlite. J. Hazard. Mater. 95, 29–46 (2002)CrossRefGoogle Scholar
  49. 49.
    Ghorbel-Abid, A., Jrad, K., Nahdia, M., Trabelsi, A.: Sorption of chromium (III) from aqueous solution using bentonitic clay. Desalination 246, 595–604 (2009)CrossRefGoogle Scholar
  50. 50.
    Turan, P., Doğan, M., Alkan, M.: Uptake of trivalent chromium ions from aqueous solutions using kaolinite. J. Hazard. Mater. 148, 56–63 (2007)CrossRefGoogle Scholar
  51. 51.
    Sarı, A., Tuzen, M., Soylak, M.: Adsorption of Pb(II) and Cr(III) from aqueous solution on Celtek clay. J. Hazard. Mater. 144, 41–46 (2007)CrossRefGoogle Scholar
  52. 52.
    Chantawong, V., Harvey, N.W., Bashkin, V.N.: Comparison of heavy metal adsorptions by Thai kaolin and ballclay. Air. Soil. Pollut. 148, 111–125 (2003)CrossRefGoogle Scholar
  53. 53.
    Wu, P., Zhang, Q., Dai, Y., Zhu, N., Dang, Z., Li, P., Wu, J., Wang, X.: Adsorption of Cu(II), Cd(II) and Cr(III) ions from aqueous solutions on humic acid modified Ca-montmorillonite. Geoderma 164, 215–219 (2011)CrossRefGoogle Scholar
  54. 54.
    Yun, L., Pingxiao, W.U., Zhi, D., Daiqi, Y.E.: Heavy metal removal from water by adsorption using pillared montmorillonite. Acta Geol. Sin. 80, 219–225 (2006)CrossRefGoogle Scholar
  55. 55.
    El-Bayaa, A.A., Badawy, N.A., AlKhalik, E.A.: The removal of hazardous contaminants from wastewater using natural zeolite. J. Hazard. Mater. 170, 1204–1209 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryCOMSATS University IslamabadAbbottabadPakistan
  2. 2.Department of ChemistryCOMSATS University IslamabadIslamabadPakistan
  3. 3.Department of Electrical and Computer EngineeringCOMSATS University IslamabadAbbottabadPakistan
  4. 4.Department of ChemistryUniversity of PoonchRawalakotPakistan

Personalised recommendations