Advertisement

The Reaction of 2-Chloroquinoxaline with Piperidine in DMSO–H2O and DMF–H2O Mixtures: Kinetics and Solvent Effects

  • Magda F. FathallaEmail author
  • Yasser R. Elmarassi
  • Omasaad F. Omer
  • Ezzat A. Hamed
Article
  • 9 Downloads

Abstract

The rate constant of the reaction of 2-chloroquinoxaline with piperidine was measured spectrophotometrically using different aqueous solutions containing DMSO or DMF. Whatever the experimental conditions used, this reaction follows pseudo first order kinetics and is not amine catalyzed. Furthermore, the second order rate constant, kA, increases with increasing percentage of DMSO in the solution, in contrast to DMF. The kA values were then correlated with solvent parameters α, β, π*, \(E_{\text{T}}^{\text{N}}\) and Y. Plots of log10kA against the reciprocal of the dielectric constant at 25 °C were found to be nonlinear in DMSO, while a linear relationship with a negative slope was found in the case of DMF. This difference between the solvents is presumably due to different solvation pathways between their initial and transition states. Thus, activation parameters ΔH#, ΔS# and ΔG# were evaluated and discussed to support this hypothesis. Finally, DFT calculations were performed, using the B3LYP functional and 6-311G(d,p) basis set, to determine optimum molecular geometry. IR, NMR spectra for both reactant and product and were then compared with experimental values.

Keywords

Kinetics Solvent effect 2-Chloroquinoxaline 

Notes

References

  1. 1.
    Tandon, V.K., Yadav, D.B., Maurya, H.K., Chaturvedi, A.K., Shukla, P.K.: Design, synthesis, and biological evaluation of 1,2,3-trisubstituted-1,4-dihydrobenzo[g]quinoxaline-5,10-diones and related compounds as antifungal and antibacterial agents. Bioorg. Med. Chem. 14, 6120–6126 (2006)CrossRefGoogle Scholar
  2. 2.
    Kotharkar, S.A., Shinde, D.B.: Synthesis of antimicrobial 2,9,10-trisubstituted-6-oxo-7,12-dihydro-chromeno [3, 4-b] quinoxalines. Bioorg. Med. Chem. Lett. 16, 6181–6184 (2006)CrossRefGoogle Scholar
  3. 3.
    Vyas, D., Chauhan, N., Parikh, A.: Synthesis and anti microbial activity of quinoxaline based thiazolidinones and azetidinones. Indian J. Chem. Sect B 46, 1699–1702 (2007)Google Scholar
  4. 4.
    Mashevskaya, I., Makhmudov, R., Aleksandrova, G., Golovnina, O., Duvalov, A., Maslivets, A.: Synthesis and study of the antibacterial and analgesic activity of 3-acyl-1,2,4,5-tetrahydro-[1,2-a] quinoxaline-1,2,4-triones. Pharm. Chem. J. 35, 196–198 (2001)CrossRefGoogle Scholar
  5. 5.
    Carta, A., Loriga, M., Paglietti, G., Mattana, A., Fiori, P.L., Mollicotti, P., Sechi, L., Zanetti, S.: Synthesis, anti-mycobacterial, anti-trichomonas and anti-candida in vitro activities of 2-substituted-6,7-difluoro-3-methylquinoxaline-1,4-dioxides. Eur. J. Med. Chem. 39, 195–203 (2004)CrossRefGoogle Scholar
  6. 6.
    Seitz, L.E., Suling, W.J., Reynolds, R.C.: Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives. J. Med. Chem. 45, 5604–5606 (2002)CrossRefGoogle Scholar
  7. 7.
    Zarranz, B., Jaso, A., Aldana, I., Monge, A.: Synthesis and antimycobacterial activity of new quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives. Bioorg. Med. Chem. 11, 2149–2156 (2003)CrossRefGoogle Scholar
  8. 8.
    Jaso, A., Zarranz, B., Aldana, I., Monge, A.: Synthesis of new quinoxaline-2-carboxylate 1,4-dioxide derivatives as anti-mycobacterium tuberculosis agents. J. Med. Chem. 48, 2019–2025 (2005)CrossRefGoogle Scholar
  9. 9.
    Jaso, A., Zarranz, B., Aldana, I., Monge, A.: Synthesis of new 2-acetyl and 2-benzoyl quinoxaline 1, 4-di-N-oxide derivatives as anti-mycobacterium tuberculosis agents. Eur. J. Med. Chem. 38, 791–800 (2003)CrossRefGoogle Scholar
  10. 10.
    Burguete, A., Pontiki, E., Hadjipavlou-Litina, D., Villar, R., Vicente, E., Solano, B., Ancizu, S., Pérez-Silanes, S., Aldana, I., Monge, A.: Synthesis and anti-inflammatory/antioxidant activities of some new ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives and of their 4,5-dihydro-(1H)-pyrazole analogues. Bioorg. Med. Chem. Lett. 17, 6439–6443 (2007)CrossRefGoogle Scholar
  11. 11.
    Wagle, S., Adhikari, A.V., Kumari, N.S.: Synthesis of some new 2-(3-methyl-7-substituted-2-oxoquinoxalinyl)-5-(aryl)-1,3,4-oxadiazoles as potential non-steroidal antiinflammatory and analgesic agents. Indian J. Chem. Sect B 47, 439–448 (2008)Google Scholar
  12. 12.
    Monge, A., Palop, J., Urbasos, I., Fernández-Alvarez, E.: New quinoxaline and pyrimido [4,5‐b] quinoxaline derivatives. Potential antihypertensive and blood platelet antiaggregating agents. J. Heterocycl. Chem. 26, 1623–1626 (1989)CrossRefGoogle Scholar
  13. 13.
    Kurasawa, Y., Muramatsu, M., Okamoto, Y., Takada, A.: Synthesis of novel 3-(α-arylhydrazono-1,3,4-oxadiazol-2-ylmethyl)-2-oxo-1,2-dihydroquinoxalines and their characteristic tautomerism between the hydrazone imine and diazenyl enamine forms. J. Heterocycl. Chem. 23, 637–639 (1986)CrossRefGoogle Scholar
  14. 14.
    Stahl, N., Baldwin, M.A., Teplow, D.B., Hood, L., Gibson, B.W., Burlingame, A.L., Prusiner, S.B.: Structural studies of the scrapie prion protein using mass spectrometry and amino acid sequencing. Biochemistry 32, 1991–2002 (1993)CrossRefGoogle Scholar
  15. 15.
    Zielkiewicz, J.: Solvation of DMF in the N,N-dimethylformamide + alcohol + water mixtures investigated by means of the Kirkwood–Buff integrals. J. Phys. Chem. 99, 4787–4793 (1995)CrossRefGoogle Scholar
  16. 16.
    Sengwa, R., Khatri, V., Sankhla, S.: Structure and hydrogen bonding in binary mixtures of N, N-dimethylformamide with some dipolar aprotic and protic solvents by dielectric characterization. Indian J. Chem. Sect A 48, 512–519 (2009)Google Scholar
  17. 17.
    Patai, S.: The Chemistry of Amino, Nitroso, Nitro and Related Groups, Chapter 26, pp. 1215–1300. Wiley, Chichester (1996)CrossRefGoogle Scholar
  18. 18.
    Al-Howsaway, H.O., Fathalla, M.F., El-Bardan, A.A., Hamed, E.A.: Reaction of 4-chloro-3,5-dinitrobenzotrifluoride with aniline derivatives. Substituent effects. J. Chem. Res. 2007, 509–512 (2007)CrossRefGoogle Scholar
  19. 19.
    Fathalla, M.F.: Solvent effect on the alkaline hydrolysis of 2-thiophenyl-3,5-dinitropyridine. Int. J. Chem. Kinet. 38, 159–165 (2006)CrossRefGoogle Scholar
  20. 20.
    Fathalla, M.F., Hamed, E.A.: Kinetics of the nucleophilic substitution reactions of methyl 2,4-dichloro-3,5-dinitrobenzoate with piperidine, piperazine, morpholine and thiomorpholine in methanol and benzene. J. Chem. Res. 2006, 413–416 (2006)CrossRefGoogle Scholar
  21. 21.
    Hamed, E., El-Bardan, A., Saad, E., Gohar, G., Hassan, G.: Nucleophilic substitutions at the pyridine ring. Conformational preference of the products and kinetics of the reactions of 2-chloro-3-nitro-and 2-chloro-5-nitro-pyridines with arenethiolates. J. Chem. Soc. Perkin Trans. 2, 2415–2422 (1997)CrossRefGoogle Scholar
  22. 22.
    EL Hegazy, F.E.Z.M., Abdel Fattah, S.Z., Hamed, E.A., Sharaf, S.M.: Kinetics of the reaction of 2-chloro-3,5-dinitropyridine with meta-and para-substituted anilines in methanol. J. Phys. Org. Chem. 13, 549–554 (2000)CrossRefGoogle Scholar
  23. 23.
    Asghar, B.H., Fathalla, M.F., Hamed, E.A.: Solvent and substituent effects on the reaction of 2- and 4-chloro-3,5-dinitrobenzotrifluorides with substituted anilines. Int. J. Chem. Kinet. 41, 777–786 (2009)CrossRefGoogle Scholar
  24. 24.
    Fathalla, M.F., Kassem, T.S., Hamed, E.A.: Kinetics of the reaction between methyl 2,4-dichloro-3,5-dinitrobenzoate and piperidine—solvent effect. Indian J. Chem. Sect A 47A, 1348–1354 (2008)Google Scholar
  25. 25.
    Fathalla, M.F.: Kinetics of the reaction of 2-chloro-quinoxaline with hydroxide ion in ACN–H2O and DMSO–H2O binary solvent mixtures. J. Solution Chem. 40, 1258–1270 (2011)CrossRefGoogle Scholar
  26. 26.
    Isanbor, C., Emokpae, T.A., Crampton, M.R.: Steric and electronic effects on the mechanism of nucleophilic substitution (SN Ar) reactions of some phenyl 2,4,6-trinitrophenyl ethers with aniline and N-methylaniline in acetonitrile and in dimethyl sulfoxide. J. Chem. Soc. Perkin Trans. 2, 2019–2024 (2002)CrossRefGoogle Scholar
  27. 27.
    Crampton, M.R., Emokpae, T.A., Isanbor, C., Batsanov, A.S., Howard, J.A., Mondal, R.: Effects of ortho-and para-ring activation on the kinetics of SNAr reactions of 1-chloro-2-nitro-and 1-phenoxy-2-nitrobenzenes with aliphatic amines in acetonitrile. Eur. J. Org. Chem. 1222–1230 (2006)Google Scholar
  28. 28.
    Banjoko, O., Babatunde, I.A.: Rationalization of the conflicting effects of hydrogen bond donor solvent on nucleophilic aromatic substitution reactions in non-polar aprotic solvent: reactions of phenyl 2,4,6-trinitrophenyl ether with primary and secondary amines in benzene–methanol mixtures. Tetrahedron 60, 4645–4654 (2004)CrossRefGoogle Scholar
  29. 29.
    Smith, M.B., March, J.: March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. Wiley, Hoboken (2007)Google Scholar
  30. 30.
    Acevedo, O., Jorgensen, W.L.: Solvent effects and mechanism for a nucleophilic aromatic substitution from QM/MM simulations. Org. Lett. 6, 2881–2884 (2004)CrossRefGoogle Scholar
  31. 31.
    Ibrahim, M.F., Abdel-Reheem, H.A., Khattab, S.N., Hamed, E.A.: Nucleophilic substitution reactions of 2,4-dinitrobenzene derivatives with hydrazine: leaving group and solvent effects. Int. J. Chem. 5, 33–45 (2013)CrossRefGoogle Scholar
  32. 32.
    Youssef, N.M., Elshazly, S., Hamed, E.A.: Kinetic study on the morpholinolysis of esters analogues to flutamide in MeOH–H2O mixtures: effect of medium on reactivity and mechanism. Int. J. Chem. 7, 168–176 (2015)CrossRefGoogle Scholar
  33. 33.
    Fathalla, M., El-Subruiti, G., El-Marassi, Y.: Kinetic and thermodynamic studies of uncatalysed and Hg(II)-catalysed solvolysis of a chlorocobalt(III) complex in binary aqueous media. Prog. React. Kinet. Mech. 34, 183–197 (2009)CrossRefGoogle Scholar
  34. 34.
    El-Shazly, S.A., Babaqi, A.A., Mohamed, M.T., Zaghlol, A.A., Amira, M.F.: Solvent effects on the aquation of chloropentammine-cobalt(III) perchlorate in ethanol–water. Trans. Met. Chem. 16, 488–491 (1991)CrossRefGoogle Scholar
  35. 35.
    Ismail, A.M., Seleim, S.M., Zaghloul, A.A.-E.-H., Amira, M.F.: Kinetics and mechanism of aquation of bromopentammine cobalt(III) cation assisted by ion-pairing succinate anion in ethane-2-diol–water mixtures. Eur. J. Chem. 3, 196–201 (2012)CrossRefGoogle Scholar
  36. 36.
    Puranik, S.M., Kumbharkhane, A.C., Mehrotra, S.C.: Dielectric study of dimethyl sulfoxide–water mixtures using the time-domain technique. J. Chem. Soc. Faraday Trans. I 88, 433–435 (1992)CrossRefGoogle Scholar
  37. 37.
    Critchfield, F.E., Gibson, J.A., Hall, J.L.: Dielectric constant and refractive index from 20 to 35° and density at 25° for the system tetrahydrofuran—water 1. J. Am. Chem. Soc. 75, 6044–6045 (1953)CrossRefGoogle Scholar
  38. 38.
    Fathalla, M.F., Ismail, A.M.: Kinetics and reactivity of indole-2,3-dione ring towards alkali in dimethylsulphoxide–water mixtures. Indian J. Chem. Sect A 45, 901–904 (2006)Google Scholar
  39. 39.
    Radman, R.F., Ismail, A.M., Al-Jallal, N.A.: Kinetics of the alkaline hydrolysis of isatin and N-methylisatin in water and water–N, N-dimethylacetamide mixtures. J. Saudi Chem. Soc. 14, 223–229 (2010)CrossRefGoogle Scholar
  40. 40.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, E.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09 ed. Gaussian Inc., Wallingford CT (2009)Google Scholar
  41. 41.
    Dennington, R., Keith, T., Millam, J. Semichem Inc., Shawnee Mission Ks. GaussView, Version, 5 (2009)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Magda F. Fathalla
    • 1
    Email author
  • Yasser R. Elmarassi
    • 2
  • Omasaad F. Omer
    • 3
  • Ezzat A. Hamed
    • 1
  1. 1.Chemistry Department, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  2. 2.Basic Science DepartmentImam Abdulrahman Bin Faisal University (Dammam University)DammamKingdom of Saudi Arabia
  3. 3.Chemistry DepartmentFaculty of ScienceMusrataLibya

Personalised recommendations