Thermodynamic Modeling Study on Phase Equilibrium of Gas Hydrate Systems for CO2 Capture

  • Ahmad Banafi
  • Mohamad Mohamadi-Baghmolaei
  • Abdollah Hajizadeh
  • Reza AzinEmail author
  • Amir Abbas Izadpanah


A thermodynamic model is introduced to describe equilibrium conditions of gas hydrates formed from mixtures of CO2, N2 and H2O. The model employs the van der Waals and Platteeuw (vdW–P) solid solution theory and a modified version of cubic-plus-association equation of state that uses the Peng–Robinson equation of state for physical interactions (PR–CPA) to describe hydrate and fluid phases, respectively. When not available elsewhere, the model parameters are determined as part of this work. Pure component parameters for N2 were calculated by fitting of the PR–CPA parameters to vapor pressures and saturated liquid densities. Moreover, solubility data for N2 in pure water are used to fit the binary interaction parameter for the N2–H2O system. Finally, Kihara cell potential parameters are obtained by regressing the model to the hydrate dissociation pressures of mixed hydrates. The model is validated with available experimental data in terms of equilibrium dissociation pressure and hydrate composition. Results reveal that the model is capable of describing equilibrium conditions with high accuracy. In addition to the equilibrium dissociation pressure, the model is able to predict hydrate compositions with satisfactory accuracy compared to other models, although such data were not utilized as reference data in the fitting procedure. Due to disparity amongst various data sets for the studied system, it is difficult to find unequivocally a model that perform better for all data sets. However, the introduced model shows more accurate results for most data sets and obtains satisfactory agreement in the rest. Additionally, the presented model predicts the structural transition boundary better than other similar models.


Gas hydrates Carbon dioxide capture Thermodynamic modeling van der Waals–Platteeuw CPA 

List of Symbols


Attractive parameter of a cubic EoS


Co-volume parameter of a cubic EoS


Radial distribution function


Binary interaction parameter


Binary interaction parameter




Universal ideal gas constant


Absolute temperature


Molar volume


Compressibility factor


Rescaled critical temperature


Rescaled critical pressure


Fugacity of gas species


The mole fraction of component j in the vapor phase


The mole fraction of the component i in the liquid/vapor phase

\(X^{{A_{i} }}\)

The mole fraction of the molecule i not bonded at site A


The spherical core cell potential of component j in a cavity of type m


The linear distance from the center of the cell


The coordination number for the guest in a cavity of type m


The radius of cavity type m


The Langmuir coefficient of component j in a cavity of type m


The Boltzmann constant


Number of data points


The composition of hydrate former j in the hydrate phase on a water-free basis

Greek symbols

\(\varepsilon^{{A_{i} B_{j} }}\)

Association energy between site A of molecule i and site B on molecule j

\(\beta^{{A_{i} B_{j} }}\)

Association volume between site A of molecule i and site B on molecule j


Rescaled acentric factor


The molar density of the mixture


The chemical potential


The number of cavities of type m per water molecule in the unit cell


The fractional occupancy of component j in a cavity of type m

\(\Delta^{{A_{i} B_{j} }}\)

Association strength


The activity of water in the non-ideal liquid phase

\(\Delta \mu \left( {T, P} \right)_{w}^{L}\)

Chemical potential difference for water between the meta-stable β-phase and liquid phase

\(\Delta \mu \left( {T_{0} , P_{0} } \right)_{w}^{\beta - L}\)

The chemical potential difference for water between the β-phase and liquid phase at reference temperature T0 and reference pressure P0

\(\Delta \mu \left( {T, P_{R} } \right)_{w}^{{L,{\text{ref}}}}\)

The chemical potential difference for water at temperature T and the dissociation pressure of the reference pressure PR

\(\Delta H\left( {T_{0} , P_{0} } \right)_{w}^{{\beta - {\text{ice}}}}\)

The differences in molar enthalpy for water between the meta-stable β-phase measured for the reference hydrate and ice

\(\Delta H\left( T \right)_{w}^{{{\text{ice}} - L}}\)

The differences in molar enthalpy for water between ice and liquid water

\(\Delta V_{w}^{{\beta - {\text{ice}}}}\)

The differences in molar volume for water between the β-phase measured for the reference hydrate and ice

\(\Delta V_{w}^{{{\text{ice}} - L}}\)

The differences in molar volume for water between ice and liquid water

\(\Delta C_{P}\)

The isobaric heat capacity difference for water from the reference temperature to the actual temperature



The liquid phase


The hydrate phase


The vapor phase


The meta-stable phase with the same structure of water in the hydrate as in the reference state


The fugacity coefficient of component j in the vapor phase



Critical property


Reduced property


The component i


The component j




The reference situation



  1. 1.
    Eslamimanesh, A., Mohammadi, A.H., Richon, D., Naidoo, P., Ramjugernath, D.: Application of gas hydrate formation in separation processes: a review of experimental studies. J. Chem. Thermodyn. 46, 62–71 (2012). CrossRefGoogle Scholar
  2. 2.
    Tzirakis, F., Stringari, P., von Solms, N., Coquelet, C., Kontogeorgis, G.: Hydrate equilibrium data for the CO2+N2 system with the use of tetra-n-butylammonium bromide (TBAB), cyclopentane (CP) and their mixture. Fluid Phase Equilib. 408, 240–247 (2016). CrossRefGoogle Scholar
  3. 3.
    Hajizadeh, A., Mohamadi-Baghmolaei, M., Azin, R., Osfouri, S., Heydari, I.: Technical and economic evaluation of flare gas recovery in a giant gas refinery. Chem. Eng. Res. Des. 131, 506–519 (2018)CrossRefGoogle Scholar
  4. 4.
    Mustafa, J., Farhan, M.: CO separation from flue gses using different types of membranes. J. Membr. Sci. Technol. (2016). CrossRefGoogle Scholar
  5. 5.
    Chazallon, B., Pirim, C.: Selectivity and CO2 capture efficiency in CO2–N2 clathrate hydrates investigated by in situ Raman spectroscopy. Chem. Eng. J. 342, 171–183 (2018). CrossRefGoogle Scholar
  6. 6.
    Herslund, P.J.: Thermodynamic and Process Modelling of Gas Hydrate Systems in CO2 Capture Processes. Technical University of Denmark, Department of Chemical and Biochemical Engineering, Lyngby (2013)Google Scholar
  7. 7.
    Sloan, E.D., Koh, C.A.: Clathrate Hydrates of Natural Gases, 3rd edn. Chemical Industries. CRC Press, Boca Raton (2008)Google Scholar
  8. 8.
    Belandria, V., Eslamimanesh, A., Mohammadi, A.H., Richon, D.: Gas hydrate formation in carbon dioxide+nitrogen+water system: compositional analysis of equilibrium phases. Ind. Eng. Chem. Res. 50(8), 4722–4730 (2011). CrossRefGoogle Scholar
  9. 9.
    Li, L., Zhu, L., Fan, J.: The application of CPA-vdWP to the phase equilibrium modeling of methane-rich sour natural gas hydrates. Fluid Phase Equilib. 409, 291–300 (2016). CrossRefGoogle Scholar
  10. 10.
    Kontogeorgis, G.M., Voutsas, E.C., Yakoumis, I.V., Tassios, D.P.: An equation of state for associating fluids. Ind. Eng. Chem. Res. 35(11), 4310–4318 (1996). CrossRefGoogle Scholar
  11. 11.
    Herslund, P.J., Thomsen, K., Abildskov, J., von Solms, N.: Phase equilibrium modeling of gas hydrate systems for CO2 capture. J. Chem. Thermodyn. 48, 13–27 (2012). CrossRefGoogle Scholar
  12. 12.
    Sfaxi, I.B.A., Belandria, V., Mohammadi, A.H., Lugo, R., Richon, D.: Phase equilibria of CO2+N2 and CO2+CH4 clathrate hydrates: experimental measurements and thermodynamic modelling. Chem. Eng. Sci. 84, 602–611 (2012). CrossRefGoogle Scholar
  13. 13.
    Tsivintzelis, I., Kontogeorgis, G.M., Michelsen, M.L., Stenby, E.H.: Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part II: binary mixtures with CO2. Fluid Phase Equilib. 306(1), 38–56 (2011). CrossRefGoogle Scholar
  14. 14.
    Tabasinejad, F., Moore, R.G., Mehta, S.A., Van Fraassen, K.C., Barzin, Y., Rushing, J.A., Newsham, K.E.: Water solubility in supercritical methane, nitrogen, and carbon dioxide: measurement and modeling from 422 to 483 K and pressures from 3.6 to 134 MPa. Ind. Eng. Chem. Res. 50(7), 4029–4041 (2011)CrossRefGoogle Scholar
  15. 15.
    Perakis, C., Voutsas, E., Magoulas, K., Tassios, D.: Thermodynamic modeling of the vapor–liquid equilibrium of the water/ethanol/CO2 system. Fluid Phase Equilib. 243(1), 142–150 (2006). CrossRefGoogle Scholar
  16. 16.
    Voutsas, E., Perakis, C., Pappa, G., Tassios, D.: An evaluation of the performance of the cubic-plus-association equation of state in mixtures of non-polar, polar and associating compounds: towards a single model for non-polymeric systems. Fluid Phase Equilib. 261(1), 343–350 (2007). CrossRefGoogle Scholar
  17. 17.
    Pappa, G.D., Perakis, C., Tsimpanogiannis, I.N., Voutsas, E.C.: Thermodynamic modeling of the vapor–liquid equilibrium of the CO2/H2O mixture. Fluid Phase Equilib. 284(1), 56–63 (2009). CrossRefGoogle Scholar
  18. 18.
    Aasen, A., Hammer, M., Skaugen, G., Jakobsen, J.P., Wilhelmsen, Ø.: Thermodynamic models to accurately describe the PVTxy-behavior of water/carbon dioxide mixtures. Fluid Phase Equilib. 442, 125–139 (2017). CrossRefGoogle Scholar
  19. 19.
    Peng, D.-Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15(1), 59–64 (1976). CrossRefGoogle Scholar
  20. 20.
    Pfohl, O., Giese, T., Dohrn, R., Brunner, G.: 1. Comparison of 12 equations of state with respect to gas-extraction processes: reproduction of pure-component properties when enforcing the correct critical temperature and pressure. Ind. Eng. Chem. Res. 37(8), 2957–2965 (1998). CrossRefGoogle Scholar
  21. 21.
    Pfohl, O., Pagel, A., Brunner, G.: Phase equilibria in systems containing o-cresol, p-cresol, carbon dioxide, and ethanol at 323.15–473.15 K and 10–35 MPa. Fluid Phase Equilib. 157(1), 53–79 (1999). CrossRefGoogle Scholar
  22. 22.
    Platteeuw, J.C., van der Waals, J.H.: Thermodynamic properties of gas hydrates. Mol. Phys. 1(1), 91–96 (1958). CrossRefGoogle Scholar
  23. 23.
    Chen, G.-J., Guo, T.-M.: A new approach to gas hydrate modelling. Chem. Eng. J. 71(2), 145–151 (1998). CrossRefGoogle Scholar
  24. 24.
    Bhawangirkar, D.R., Adhikari, J., Sangwai, J.S.: Thermodynamic modeling of phase equilibria of clathrate hydrates formed from CH4, CO2, C2H6, N2 and C3H8, with different equations of state. J. Chem. Thermodyn. 117, 180–192 (2017). CrossRefGoogle Scholar
  25. 25.
    Parrish, W.R., Prausnitz, J.M.: Dissociation pressures of gas hydrates formed by gas mixtures. Ind. Eng. Chem. Process. Des. Dev. 11(1), 26–35 (1972). CrossRefGoogle Scholar
  26. 26.
    Chen, G.-J., Guo, T.-M.: Thermodynamic modeling of hydrate formation based on new concepts. Fluid Phase Equilib. 122(1), 43–65 (1996). CrossRefGoogle Scholar
  27. 27.
    Klauda, J.B., Sandler, S.I.: A fugacity model for gas hydrate phase equilibria. Ind. Eng. Chem. Res. 39(9), 3377–3386 (2000). CrossRefGoogle Scholar
  28. 28.
    Klauda, J.B., Sandler, S.I.: Phase behavior of clathrate hydrates: a model for single and multiple gas component hydrates. Chem. Eng. Sci. 58(1), 27–41 (2003). CrossRefGoogle Scholar
  29. 29.
    Kontogeorgis, G.M., Michelsen, M.L., Folas, G.K., Derawi, S., von Solms, N., Stenby, E.H.: Ten years with the CPA (cubic-plus-association) equation of state. Part 1 Pure compounds and self-associating systems. Ind. Eng. Chem. Res. 45(14), 4855–4868 (2006). CrossRefGoogle Scholar
  30. 30.
    Mohamadi-Baghmolaei, M., Hajizadeh, A., Azin, R., Izadpanah, A.A.: Assessing thermodynamic models and introducing novel method for prediction of methane hydrate formation. J. Pet. Explor. Prod. Technol. 8, 1401–1412 (2018)CrossRefGoogle Scholar
  31. 31.
    Boston, J.F., Mathias, P.: Phase equilibria in a third-generation process simulator. In: Paper presented at the Proceedings of the 2nd International Conference on Phase Equilibria and Fluid Properties in the Chemical Processing Industry. Berlin, March 17–21, 1980Google Scholar
  32. 32.
    Mathias, P.M.: A versatile phase equilibrium equation of state. Ind. Eng. Chem. Process. Des. Dev. 22(3), 385–391 (1983). CrossRefGoogle Scholar
  33. 33.
    McKoy, V., Sinanoğlu, O.: Theory of dissocation pressures of some gas hydrates. J. Chem. Phys. 38, 2946–2956 (1963). CrossRefGoogle Scholar
  34. 34.
    Herri, J.M., Bouchemoua, A., Kwaterski, M., Fezoua, A., Ouabbas, Y., Cameirao, A.: Gas hydrate equilibria for CO2–N2 and CO2–CH4 gas mixtures—experimental studies and thermodynamic modelling. Fluid Phase Equilib. 301(2), 171–190 (2011). CrossRefGoogle Scholar
  35. 35.
    Mooijer-van den Heuvel, M.M., Peters, C.J., Swaan Arons, J.: Influence of water-insoluble organic components on the gas hydrate equilibrium conditions of methane. Fluid Phase Equilib. 172(1), 73–91 (2000). CrossRefGoogle Scholar
  36. 36.
    Holder, G.D., Corbin, G., Papadopoulos, K.D.: Thermodynamic and molecular properties of gas hydrates from mixtures containing methane, argon, and krypton. Ind. Eng. Chem. Fundam. 19(3), 282–286 (1980). CrossRefGoogle Scholar
  37. 37.
    Huang, S.H., Radosz, M.: Equation of state for small, large, polydisperse, and associating molecules. Ind. Eng. Chem. Res. 29(11), 2284–2294 (1990). CrossRefGoogle Scholar
  38. 38.
    Dharmawardhana, P.B., Parrish, W.R., Sloan, E.D.: Experimental thermodynamic parameters for the prediction of natural gas hydrate dissociation conditions. Ind. Eng. Chem. Fundam. 19(4), 410–414 (1980). CrossRefGoogle Scholar
  39. 39.
    Design Institute for Physical Property, D.: DIPPR Project 801, Full Version: Evaluated Standard Thermophysical Property Values (2011)Google Scholar
  40. 40.
    Chapoy, A., Mohammadi, A.H., Tohidi, B., Richon, D.: Gas solubility measurement and modeling for the nitrogen+water system from 274.18 K to 363.02 K. J. Chem. Eng. Data 49(4), 1110–1115 (2004). CrossRefGoogle Scholar
  41. 41.
    Baranenko, V.I., Sysoev, V.S., Fal’kovskii, L.N., Kirov, V.S., Piontkovskii, A.I., Musienko, A.N.: The solubility of nitrogen in water. Soviet At. Energy 68, 162–165 (1990). CrossRefGoogle Scholar
  42. 42.
    Herslund, P.J., Thomsen, K., Abildskov, J., von Solms, N.: Modelling of tetrahydrofuran promoted gas hydrate systems for carbon dioxide capture processes. Fluid Phase Equilib. 375, 45–65 (2014). CrossRefGoogle Scholar
  43. 43.
    Kang, S.-P., Lee, H., Lee, C.S., Sung, W.M.: Hydrate phase equilibria of the guest mixtures containing CO2, N2 and tetrahydrofuran. Fluid Phase Equilib. 185, 1 (2001). CrossRefGoogle Scholar
  44. 44.
    Fan, S.-S., Guo, T.-M.: Hydrate formation of CO2-rich binary and quaternary gas mixtures in aqueous sodium chloride solutions. J. Chem. Eng. Data 44(4), 829–832 (1999). CrossRefGoogle Scholar
  45. 45.
    Sun, S.-C., Liu, C.-L., Meng, Q.-G.: Hydrate phase equilibrium of binary guest-mixtures containing CO2 and N2 in various systems. J. Chem. Thermodyn. 84, 1–6 (2015). CrossRefGoogle Scholar
  46. 46.
    Sadeq, D., Iglauer, S., Lebedev, M., Smith, C., Barifcani, A.: Experimental determination of hydrate phase equilibrium for different gas mixtures containing methane, carbon dioxide and nitrogen with motor current measurements. J. Nat. Gas Sci. Eng. 38, 59–73 (2017). CrossRefGoogle Scholar
  47. 47.
    Olsen, M.B., Majumdar, A., Bishnoi, P.R.: Experimental studies on hydrate equilibrium–carbon dioxide and its systems. Int. J. Soc. Mater. Engi. Res. 7(1), 17–23 (1999). CrossRefGoogle Scholar
  48. 48.
    Lee, Y., Lee, S., Lee, J., Seo, Y.: Structure identification and dissociation enthalpy measurements of the CO2+N2 hydrates for their application to CO2 capture and storage. Chem. Eng. J. 246, 20–26 (2014). CrossRefGoogle Scholar
  49. 49.
    Bruusgaard, H., Beltrán, J.G., Servio, P.: Vapor − liquid water − hydrate equilibrium data for the system N2+CO2+H2O. J. Chem. Eng. Data 53(11), 2594–2597 (2008). CrossRefGoogle Scholar
  50. 50.
    Linga, P., Kumar, R., Englezos, P.: The clathrate hydrate process for post and pre-combustion capture of carbon dioxide. J. Hazard. Mater. 149(3), 625–629 (2007). CrossRefPubMedGoogle Scholar
  51. 51.
    Linga, P., Kumar, R., Englezos, P.: Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures. Chem. Eng. Sci. 62(16), 4268–4276 (2007). CrossRefGoogle Scholar
  52. 52.
    Garapati, N., Anderson, B.J.: Statistical thermodynamics model and empirical correlations for predicting mixed hydrate phase equilibria. Fluid Phase Equilib. 373, 20–28 (2014). CrossRefGoogle Scholar
  53. 53.
    Diamond, L.W.: Salinity of multivolatile fluid inclusions determined from clathrate hydrate stability. Geochim. Cosmochim. Acta 58(1), 19–41 (1994). CrossRefGoogle Scholar
  54. 54.
    Seo, Y., Lee, H.: Structure and guest distribution of the mixed carbon dioxide and nitrogen hydrates as revealed by X-ray diffraction and 13C NMR spectroscopy. J. Phys. Chem. B 108, 530–534 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Iranian Gas Transmission CompanyBushehrIran
  2. 2.Department of Chemical Engineering, Faculty of Petroleum, Gas and Petrochemical EngineeringPersian Gulf UniversityBushehrIran
  3. 3.Department of Petroleum Engineering, Faculty of Petroleum, Gas and Petrochemical EngineeringPersian Gulf UniversityBushehrIran

Personalised recommendations