Advertisement

Physicochemical Properties and Spectral Studies for Binary Systems of 2-Ethoxyethanol (1) + Water (2) and + Dimethyl Sulfoxide (2)

  • Xianshu Qiao
  • Fang Han
  • Long Zhao
  • Huipeng Li
  • Jianbin ZhangEmail author
Article
  • 25 Downloads

Abstract

In the development of CO2 capture and utilization, the physical and transport properties of the binary systems are significant, because these can affect the gas absorption and desorption processes. Thus, we report the densities and viscosities of two binary systems: 2-ethoxyethanol (ECS) + water (H2O) and ECS + dimethyl sulfoxide (DMSO), with various compositions at temperatures from (298.15 to 318.15) K. On the basis of these data, excess molar volumes (\(V_{\text{m}}^{\text{E}}\)) and viscosity deviations (Δη) were calculated. The \(V_{\text{m}}^{\text{E}}\) values of the two binary mixtures are negative and decrease with increasing temperatures; Δη values are positive at all compositions and decrease with increasing temperatures. The \(V_{\text{m}}^{\text{E}}\) and Δη values were fitted with the Redlich–Kister equation. The physico-chemical properties of the two binary systems, including activation enthalpy and entropy, were calculated from the kinematic viscosity. In addition, various spectral results offer evidence for the formation of weak interactions between ECS and DMSO or H2O.

Keywords

2-Ethoxyethanol Dimethyl sulfoxide Excess molar volume Viscosity deviations 

Notes

Funding

This work was supported by Key Laboratory of Coal-based CO2 Capture and Geological Storage (Jiangsu Province, China University of Mining and Technology, 2016A06), the Program for Grassland Excellent Talents of Inner Mongolia Autonomous Region, the Natural Science Foundation of Inner Mongolia Autonomous Region (2016JQ02), the Inner Mongolia Science and Technology Key Projects, and training plan of academic backbone in youth of Inner Mongolia University of Technology.

References

  1. 1.
    Gray, M.L., Soong, Y., Champagne, K.J., Baltrus, J.: CO2 capture by amine-enriched fly ash carbon sorbents. Sep. Purif. Technol. 35, 31–36 (2004)CrossRefGoogle Scholar
  2. 2.
    Cui, Z., Aroonwilas, A., Veawab, A.: Simultaneous capture of mercury and CO2 in amine-based CO2 absorption process. Ind. Eng. Chem. Res. 49, 12576–12586 (2010)CrossRefGoogle Scholar
  3. 3.
    Wolsky, A.M., Daniels, E.J., Jody, B.J.: CO2 capture from the flue gas of conventional fossil fuel fired power plants. Environ. Prog. 13, 214–219 (1994)CrossRefGoogle Scholar
  4. 4.
    Lepaumier, H., Picq, D., Carrette, P.L.: New amines for CO2 capture. II. Oxidative degradation mechanisms. Ind. Eng. Chem. Res. 48, 9068–9075 (2009)CrossRefGoogle Scholar
  5. 5.
    Archane, A., Furst, W., Provost, E.: Influence of poly(ethyleneoxide) 400 (PEG400) on the absorption of CO2 in diethanolamine (DEA)/H2O systems. J. Chem. Eng. Data 56, 1852–1856 (2011)CrossRefGoogle Scholar
  6. 6.
    Rodriguez, H., Rogers, R.D.: Liquid mixtures of ionic liquids and polymers as solvent systems. Fluid Phase Equilib. 294, 7–14 (2010)CrossRefGoogle Scholar
  7. 7.
    Li, J., Ye, Y., Chen, L.: Solubilities of CO2 in poly(ethylene glycols) from (303.15 to 333.15) K. J. Chem. Eng. Data. 57, 610–616 (2012)CrossRefGoogle Scholar
  8. 8.
    Zhang, J.B., Li, Q., Guo, Z.H.: Spectral investigation of intermolecular hydrogen bonding and S…−O interaction in diethylene glycol + H2O + SO2 systems. Ind. Eng. Chem. Res. 50, 674–679 (2011)CrossRefGoogle Scholar
  9. 9.
    Li, Q., Zhang, J.B., Li, L.H.: Solubility properties and spectral investigation of dilute SO2 in a triethylene glycol + water + La3+ system. J. Phys. Chem. B 117, 5633–5646 (2013)CrossRefGoogle Scholar
  10. 10.
    Guo, Z.H., Zhang, J.B., Zhang, T.X., Li, C.P., Zhang, Y.F., Bai, J.: Liquid viscosities, excess properties, and viscous flow thermodynamics of triethylene glycol + water mixtures at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K. J. Mol. Liq. 165, 27–31 (2012)CrossRefGoogle Scholar
  11. 11.
    Zhang, J.B., Han, F., Wei, X.H.: Spectral studies of hydrogen bonding and interaction in the absorption processes of sulfur dioxide in poly(ethylene glycol) 400 + water binary system. Ind. Eng. Chem. Res. 49, 2025–2030 (2014)CrossRefGoogle Scholar
  12. 12.
    Zhang, J.B., Zhang, P., Han, F.: Hydrogen bonding and interaction in the absorption processes of sulfur dioxide in ethylene glycol + water binary desulfurization system. Ind. Eng. Chem. Res. 48, 2025–2030 (2008)Google Scholar
  13. 13.
    Zhao, T.X., Qiao, X.S., Xu, Q.X.: Solubility and spectral investigation of dilute SO2 in the binary system polyethylene glycol 600 + water and system’s density, viscosity, and surface tension. J. Mol. Liq. 223, 224–234 (2016)CrossRefGoogle Scholar
  14. 14.
    Xie, X.H., Zhao, T.X., Guo, B.: Density, viscosity and excess properties for the binary system 2-butoxy ethanol + water at T = (298.15–318.15) K and mixture’s spectroscopic studies. Phys. Chem. Liq. 55, 1–16 (2017)CrossRefGoogle Scholar
  15. 15.
    Sha, F., Zhao, T., Guo, B.: Excess properties and spectroscopic studies of binary system 1,4-butanediol + water at T = (293.15, 298.15, 303.15, 308.15, 313.15 and 318.15) K. Phys. Chem. Liq. 54, 165–181 (2016)CrossRefGoogle Scholar
  16. 16.
    Qiao, X.S., Zhang, J.B.: Excess properties and spectral studies for binary system tri-ethylene glycol + dimethyl sulfoxide. J. Mol. Liq. 212, 187–195 (2015)CrossRefGoogle Scholar
  17. 17.
    Ali, A., Ansari, S., Nain, A.K.: Densities, refractive indices and excess properties of binary mixtures of dimethylsulphoxide with some poly(ethylene glycol)s at different temperatures. J. Mol. Liq. 178, 178–184 (2013)CrossRefGoogle Scholar
  18. 18.
    Francesconi, R., Comelli, F., Bigi, A.: Thermophysical properties of dimethyl sulfoxide + cyclic and linear ethers at 308.15 K: application of an extended cell model. Thermochim. Acta. 447, 154–160 (2006)CrossRefGoogle Scholar
  19. 19.
    Zhang, K.C., Yang, J.R., Yu, X.C., Zhang, J.B., Wei, X.H.: Densities and viscosities for binary mixtures of poly(ethylene glycol) 400 + dimethyl sulfoxide and poly(ethylene glycol) 600 + water at different temperatures. J. Chem. Eng. Data 56, 3083–3088 (2011)CrossRefGoogle Scholar
  20. 20.
    Wang, X.P., Yang, F.X., Gao, Y., Liu, Z.G.: Volumetric properties of binary mixtures of dimethyl sulfoxide with amines from (293.15 to 363.15) K. J. Chem. Thermodyn. 57, 145–151 (2013)CrossRefGoogle Scholar
  21. 21.
    Ciocirlan, O., Iulian, O.: Vapor pressure, density, viscosity and refractive index of dimethyl sulfoxide + 1,4-dimethylbenzene system. J. Serb. Chem. Soc. 73, 73–85 (2008)CrossRefGoogle Scholar
  22. 22.
    Saleh, M.A., Ahmed, O., Ahmed, M.S.: Excess molar volume, viscosity and thermodynamics of viscous flow of the system dimethylsulfoxide and acetic acid. J. Mol. Liq. 115, 41–47 (2004)CrossRefGoogle Scholar
  23. 23.
    Bhuiyan, M.M.H., Ferdaush, J., Uddin, M.H.: Densities and viscosities of binary mixtures of {dimethylsulfoxide + aliphatic lower alkanols (C1–C3)} at temperatures from T = 303.15 K to T = 323.15 K. J. Chem. Thermodyn. 39, 675–683 (2007)CrossRefGoogle Scholar
  24. 24.
    Grande, M.D.C., Juliá, J.A., García, M., Marschoff, C.M.: On the density and viscosity of (water + dimethylsulphoxide) binary mixtures. J. Chem. Thermodyn. 39, 1049–1056 (2007)CrossRefGoogle Scholar
  25. 25.
    Saleh, M.A., Akhtar, S., Shamsuddin, A.M., Uddin, M.H.: Viscosities of aqueous solutions of dimethylsulfoxide, 1,4-dioxane and tetrahydrofuran. Phys. Chem. Liq. 39, 551–556 (2001)CrossRefGoogle Scholar
  26. 26.
    Aralaguppi, M.I., And, C.V.J., Aminabhavi, T.M.: Density, refractive index, viscosity, and speed of sound in binary mixtures of 2-ethoxyethanol with dioxane, acetonitrile, and tetrahydrofuran at (298.15, 303.15, and 308.15) K. J. Chem. Eng. D 41, 1307–1310 (1996)CrossRefGoogle Scholar
  27. 27.
    Aminabhavi, T.M., Gopalakrishna, B.: Density, viscosity, refractive index, and speed of sound in binary mixtures of 2-ethoxyethanol with n-alkanes (C6 to C12), 2,2,4-trimethylpentane, and cyclohexane in the temperature interval 298.15–313.15 K. J. Chem. Eng. Data 40, 632–641 (1995)CrossRefGoogle Scholar
  28. 28.
    Islam, M.N., Yeasmin, M.N.: Viscosity of aqueous solutions of 2-methoxyethanol, 2-ethoxyethanol, and ethanolamine. J. Chem. Thermodyn. 36, 889–893 (2004)CrossRefGoogle Scholar
  29. 29.
    Li, L.H., Zhang, J.B., Li, Q., Guo, B., Zhao, T.X., Sha, F.: Density, viscosity, surface tension, and spectroscopic properties for binary system of 1,2-ethanediamine + diethylene glycol. Thermochim. Acta 590, 91–99 (2014)CrossRefGoogle Scholar
  30. 30.
    Maham, Y., Laurent, L., Mather, A.E.: Viscosities and excess properties of aqueous solutions of mono- and diethylethanolamines at temperatures between 298.15 and 353.15 K. J. Chem. Eng. Data 53, 550–553 (2002)CrossRefGoogle Scholar
  31. 31.
    Yang, C., He, G., He, Y.: Densities and viscosities of N,N-dimethylformamide + N-methyl-2-pyrrolidinone and + dimethyl sulfoxide in the temperature range (303.15 to 353.15) K. J. Chem. Eng. Data 53, 1211–1215 (2008)CrossRefGoogle Scholar
  32. 32.
    Ma, L., Sha, F., Qiao, X.S.: Excess properties and spectroscopic studies for binary system polyethylene glycol 600 + dimethyl sulfoxide at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K. Chin. J. Chem. Eng. 25, 1249–1255 (2017)CrossRefGoogle Scholar
  33. 33.
    And, H.D., Ismadji, S.: Density and viscosity correlation for several common fragrance and flavor esters. J. Chem. Eng. D 50, 727–731 (2005)CrossRefGoogle Scholar
  34. 34.
    Prak, D.L., Morris, R.E., Cowart, J.S., Hamilton, L.J., Trulove, P.C.: Density, viscosity, speed of sound, bulk modulus, and surface tension of binary mixtures of n-heptane + 2,2,4-trimethylpentane at (293.15 to 338.15) K and 0.1 MPa. J. Chem. Eng. Data 58, 3536–3544 (2013)CrossRefGoogle Scholar
  35. 35.
    Dubey, G.P., Sharma, M., Dubey, N.: Study of densities, viscosities, and speeds of sound of binary liquid mixtures of butan-1-ol with n-alkanes (C6, C8, and C10) at T = (298.15, 303.15, and 308.15) K. J. Chem. Thermodyn. 40, 309–320 (2008)CrossRefGoogle Scholar
  36. 36.
    Aralaguppi, M.I., Jadar, C.V., Aminabhavi, T.M.: Density, refractive index, and speed of sound in binary mixtures of 2-ethoxyethanol with dimethyl sulfoxide, N, N-dimethylformamide, N, N-dimethylacetamide at different temperatures. J. Chem. Eng. Data 42, 301–303 (1997)CrossRefGoogle Scholar
  37. 37.
    Zhao, T.X., Zhang, J.B., Li, L.H., Guo, B., Gao, L.L., Wei, X.H.: Excess properties and spectroscopic studies for the binary system 1,2-ethanediamine + polyethylene glycol 300 at T = (293.15, 298.15, 303.15, 308.15, 313.15, and 318.15) K. J. Mol. Liq. 198, 21–29 (2014)CrossRefGoogle Scholar
  38. 38.
    Corradini, F., Marchetti, A., Tagliazucchi, M., Tassi, L., Tosi, G.A.: Non-linear correlation model for the relative permittivity of ternary amphiprotic (solvent) mixtures. Aust. J. Chem. 46, 1711–1723 (1993)CrossRefGoogle Scholar
  39. 39.
    Qiao, X.S., Zhao, T.X., Guo, B.: Solubility and spectral studies for SO2 in a binary system of triethylene glycol + dimethyl sulfoxide at T = (298.15, 303.15, and 308.15) K and p = 123.15 kPa. J. Chem. Eng. Data 61, 1597–1607 (2016)CrossRefGoogle Scholar
  40. 40.
    Sun, S.Y., Niu, Y.X., Sun, Z.C.: Solubility properties and spectral characterization of sulfur dioxide in ethylene glycol derivatives. RSC Adv. 5, 8706–8712 (2015)CrossRefGoogle Scholar
  41. 41.
    Huang, R.H., Li, Z.Y., Li, S.D.: A study on absorption and catalytic reducing mechanism of methyl sulfoxide for SO2. J. Kunming Univ. Sci. 4, 77–82 (1994)Google Scholar
  42. 42.
    Chen, J.T., I-Min, S., Chu, H.P.: Excess molar volumes and viscosities for binary mixtures of propylene glycol monomethyl ether with methacrylic acid, benzyl methacrylate, and 2-hydroxyethyl methacrylate at (298.15, 308.15, and 318.15) K. J. Chem. Eng. Data 51, 1479–1485 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xianshu Qiao
    • 1
    • 2
  • Fang Han
    • 2
    • 3
  • Long Zhao
    • 2
  • Huipeng Li
    • 2
  • Jianbin Zhang
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Coal-based CO2 Capture and Geological StorageChina University of Mining and TechnologyXuzhouChina
  2. 2.Inner Mongolia Engineering Research Center for CO2 Capture and UtilizationHohhotChina
  3. 3.Petroleum Engineering Research Institute of PetroChina Dagang Oilfield CompanyTianjinChina

Personalised recommendations