Journal of Solution Chemistry

, Volume 48, Issue 11–12, pp 1657–1670 | Cite as

Remarks on the Evaluation of Thermodynamic Data for Sulfate Ion Protonation

  • Glenn HefterEmail author
  • Cezary Gumiński


A thorough search of the scientific literature under the auspices of the IUPAC Sub-Committee on Solubility and Equilibrium Data (SSED) has identified and compiled quantitative thermodynamic data for the first sulfate protonation step from about 270 papers, reports, books and electronic databases. A critical evaluation of these sources using well-defined criteria has rejected about half of them. The remaining (‘accepted’) data reveal that the standard state values of the first protonation constant of the sulfate ion, \(K_{1}^{\text{o}}\), corresponding to the equilibrium: \({\text{SO}_{4}^{2 - }} ({\text{aq}}) + {\text{ H}}^{ + } \left( {\text{aq}} \right) \rightleftharpoons {{\text{HSO}}_{4}^{ - }}({\text{aq}})\) at infinite dilution, are known to good levels of accuracy up to ~ 250 °C. However, at higher temperatures, and at all temperatures in the presence of added electrolytes, the equilibrium constant values are much less certain. The corresponding values for the enthalpy (\(\Delta_{\text{r}} H_{1}^{\text{o}}\)), entropy (\(\Delta_{\text{r}} S_{1}^{\text{o}}\)) and isobaric heat capacity (\(\Delta_{\text{r}} C_{p,1}^{\text{o}}\)) changes are also moderately well determined at near-ambient temperatures but are much more poorly defined both at higher temperatures and in the presence of even modest concentrations of added electrolytes. Comments on a number of aspects of the data and their evaluation are provided.


Sulfate Bisulfate Sulfuric acid Protonation Dissociation Stability constant Enthalpy Entropy Heat capacity 



This work was funded by the Analytical Division of the International Union of Pure & Applied Chemistry (IUPAC) via the project Stability Constants and Related Thermodynamic Data of Metal-Ion/Sulfate Complexes in Aqueous Solution, and (in part) by Rio Tinto Innovation (Melbourne) and the Australian Government via the Australian Research Council Linkage Grant LP130100991.

Supplementary material

10953_2019_907_MOESM1_ESM.doc (66 kb)
Supplementary material 1 (DOC 66 kb)


  1. 1.
    Greenwood, N.N., Earnshaw, A.: Chemistry of the Elements, Chap. 15, 2nd edn. Butterworth-Heinemann, Oxford (1997)Google Scholar
  2. 2.
    Thompson, R.: The Modern Inorganic Chemicals Industry. Chemical Society, London (1977)Google Scholar
  3. 3.
    Spiro, T.G., Stigliani, W.M.: Chemistry of the Environment, 2nd edn. Prentice Hall, New Jersey (2003)Google Scholar
  4. 4.
    Burkin, A.R.: Chemical Hydrometallurgy. Imperial College Press, London (2001)CrossRefGoogle Scholar
  5. 5.
    Crompton, T.R.: Battery Reference Book, 3rd edn. Elsevier, Amsterdam (2000)Google Scholar
  6. 6.
    Jacobs, J.A., Lehr, J.H., Testa, S.M. (eds.): Acid Mine Drainage, Rock Drainage, and Acid Sulfate Soils. Wiley-Blackwell, Hoboken (2014)Google Scholar
  7. 7.
    Zumdahl, S.S.: Introductory Chemistry: A Foundation, 6th edn. Houghton Mifflin, Boston (2008)Google Scholar
  8. 8.
    Skoog, D.A., West, D.M., Holler, F.J., Crouch, S.R.: Analytical Chemistry: An Introduction, 7th edn. Saunders College Publishing, Fort Worth (2000)Google Scholar
  9. 9.
    Noyes, A.A., Eastman, G.W.: In Noyes, A.A.: The Electrical Conductivity of Aqueous Solutions. Carnegie Institution, Washington DC, Publication No. 63, pp. 239–279 (1907)Google Scholar
  10. 10.
    Staples, B.R.: Activity and osmotic coefficients of aqueous sulfuric acid at 298.15 K. J. Phys. Chem. Ref. Data 10, 779–798 (1981)CrossRefGoogle Scholar
  11. 11.
    Hefter, G.T., Gumiński, C.: Pure Appl. Chem. (in preparation)Google Scholar
  12. 12.
    Powell, K.J., Brown, P.L., Byrne, R.H., Gajda, T., Hefter, G.T., Leuz, A.-K., Sjöberg, S., Wanner, H.: Sjöberg, S., Wanner, H.: Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: the Zn2+ + OH, Cl, \({\text{CO}_{3}^{ 2- }}\), \({\text{SO}_{4}^{ 2- }}\) and \({\text{PO}_{4}^{ 3- }}\) systems. Pure Appl. Chem. 85, 2249–2311 (2013)CrossRefGoogle Scholar
  13. 13.
    Grenthe, I., Puigdomenech, I. (eds.): Modelling in Aqueous Chemistry. OECD, Paris (1997)Google Scholar
  14. 14.
    Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Butterworths, London (1970)Google Scholar
  15. 15.
    Luther, R.: Die dissociation der schwefelsäuer und arsensäuer (The dissociation of sulfuric acid and arsenic acid). Z. Electrochem. 13, 294–297 (1907)CrossRefGoogle Scholar
  16. 16.
    Kohlrausch, F., Holborn, L.: Das Leitvermögen der Elektrolyte (The Conductivity of Electrolytes), p. 144. Teubner, Leipzig (1898)Google Scholar
  17. 17.
    Noyes, A.A., Stewart, M.A.: The ionization relations of sulphuric acid. J. Am. Chem. Soc. 32, 1133–1162 (1910)CrossRefGoogle Scholar
  18. 18.
    Clegg, S.L., Brimblecombe, P.: Comment on the “Thermodynamic dissociation constant of the bisulfate ion from Raman and ion interaction modeling studies of aqueous sulfuric acid at low temperatures”. J. Phys. Chem. A 109, 2703–2706 (2005)CrossRefGoogle Scholar
  19. 19.
    Fraenkel, D.: Electrolytic nature of aqueous sulfuric acid. 2. Acidity. J. Phys. Chem. B 116, 11678–11686 (2012)CrossRefGoogle Scholar
  20. 20.
    Sippola, H., Taskinen, P.: Thermodynamic properties of aqueous sulfuric acid. J. Chem. Eng. Data 59, 2389–2407 (2014)CrossRefGoogle Scholar
  21. 21.
    Orwell, G.: Animal Farm. Penguin Books, Middlesex (1965)Google Scholar
  22. 22.
    Baes, C.F., Mesmer, R.E.: The Hydrolysis of Cations. Wiley, New York (1976)Google Scholar
  23. 23.
    Brown, P.L., Ekberg, C.: Hydrolysis of Metal Ions. Wiley, Weinheim (2016)CrossRefGoogle Scholar
  24. 24.
    Bandura, A.V., L’vov, S.N.: The ionization constant of water over wide ranges of temperature and density. J. Phys. Chem. Ref. Data 35, 15–30 (2006)CrossRefGoogle Scholar
  25. 25.
    Young, T.F., Irish, D.E.: Solutions of electrolytes. Ann. Rev. Phys. Chem. 13, 435–458 (1962)CrossRefGoogle Scholar
  26. 26.
    Readnour, J.M., Cobble, J.W.: Thermodynamic properties for the dissociation of bisulfate ion and the partial molal heat capacities of bisulfuric acid and sodium bisulfate over an extended temperature range. Inorg. Chem. 8, 2174–2182 (1969)CrossRefGoogle Scholar
  27. 27.
    Dickson, A.G., Wesolowski, D.J., Palmer, D.A., Mesmer, R.E.: Dissociation constant of bisulfate ion in aqueous sodium chloride solutions to 250 °C. J. Phys. Chem. 94, 7978–7985 (1990)CrossRefGoogle Scholar
  28. 28.
    Ashurst, K.G., Hancock, R.D.: Characterization of inner- and outer-sphere complexes by thermodynamics and absorption spectra. Part 1. Sulphato-complexes of the first-row transition elements. J. Chem. Soc. Dalton Trans. 1701–1707 (1977)Google Scholar
  29. 29.
    Holmes, H.F., Mesmer, R.E.: Isopiestic studies of H2SO4(aq) at elevated temperatures. Thermodynamic properties. J. Chem. Thermodyn. 24, 317–328 (1992)CrossRefGoogle Scholar
  30. 30.
    Chen, H., Irish, D.E.: A Raman spectral study of bisulfate–sulfate systems. II. Constitution, equilibria, and ultrafast proton transfer in sulfuric acid. J. Phys. Chem. 75, 2672–2681 (1971)CrossRefGoogle Scholar
  31. 31.
    Marcus, Y.: Ions in Solution and their Solvation. Wiley, Hoboken (2015)CrossRefGoogle Scholar
  32. 32.
    Hamer, W.J.: The ionization constant and heat of ionization of the bisulfate ion from electromotive force measurements. J. Am. Chem. Soc. 56, 860–964 (1934)CrossRefGoogle Scholar
  33. 33.
    Davies, C.W., Jones, H.W., Monk, C.B.: E.M.F. studies of electrolytic dissociation. Part I. Sulphuric acid in water. Trans. Faraday Soc. 48, 921–928 (1952)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chemistry DepartmentMurdoch UniversityMurdochAustralia
  2. 2.Chemistry DepartmentUniversity of WarsawWarsawPoland

Personalised recommendations