Ion-Solvation and Ion-Association Behavior of Tetraphenylphosphonium Chloride, Sodium Tetraphenylborate and Sodium Chloride in Polyethylene Glycol + Water Mixtures at 298.15 K

  • Bidyut Debnath
  • Bijan DasEmail author


Electrical conductances of solutions of tetraphenylphosphonium chloride, sodium tetraphenylborate, and sodium chloride in polyethylene glycol (PEG) + water mixed solvent systems having 0.200, 0.400, and 0.600 mass fractions of PEG are reported at 298.15 K. In this study three different average molar masses of PEG, e.g., 300 (designated as PEG 300), 400 (designated as PEG 400), and 600 (designated as PEG 600) g·mol−1 were employed. The conductance data have been analyzed using the 1978 Fuoss conductance–concentration equation in terms of the limiting molar conductance, the association constant and the association diameter of the electrolytes. The ionic contributions to the limiting molar conductances have been estimated using tetraphenylphosphonium tetraphenylborate as the “reference electrolyte”, considering the similarity of the sizes and chemical characters of the tetraphenylphosphonium and tetraphenylborate ions possessing a quasi-spherical surface of the phenyl rings. Analyses of the results provided important information as to the ion-association and solvation behavior of the electrolytes/ions investigated in PEG + water mixed solvent media.


Electrical conductance Tetraphenylphosphonium tetraphenylborate Polyethylene glycol Fuoss conductance-concentration equation Limiting molar conductance and association constant Solvation and ion-association 



This work was financially supported by Presidency University, Kolkata, India through the Faculty Research and Professional Development Fund (FRPDF) scheme for the year 2018–19.


  1. 1.
    Gao, J.K.: Polyethylene Glycol as an Embedment for Microscopy and Histochemistry, Chap. 1. CRC Press, Cambridge (1993)Google Scholar
  2. 2.
    Fan, W., Glatz, C.E.: Charged protein partitioning in aqueous PEG–dextran two-phase systems: salt effects. Sep. Sci. Technol. 34, 423–438 (1999)CrossRefGoogle Scholar
  3. 3.
    McPherson Jr., A.: Crystallization of proteins from polyethylene glycol. J. Biol. Chem. 251, 6300–6303 (1976)Google Scholar
  4. 4.
    Brzozowski, A.M., Tolley, S.P.: Poly(ethylene) glycol monomethyl ethers—an alternative to poly(ethylene) glycols in protein crystallization. Acta Crystallograph. D 50, 466–468 (1994)CrossRefGoogle Scholar
  5. 5.
    Patel, S., Cudney, B., McPherson, A.: Polymeric precipitants for the crystallization of macromolecules. Biochem. Biophys. Res. Commun. 207, 819–828 (1995)CrossRefGoogle Scholar
  6. 6.
    Mali, C.S., Chavan, S.D., Kanse, K.S., Kumbharkhane, A.C., Mehrotra, S.C.: Dielectric relaxation of polyethylene glycol–water mixtures using time domain technique. Ind. J. Pure Appl. Phys. 45, 476–481 (2007)Google Scholar
  7. 7.
    De, R., Das, B.: Electrical conductances of sodium polystyrenesulphonate in 2-ethoxyethanol (1) + water (2) mixed solvent media in presence of sodium chloride at (308.15, 313.15, 318.15, and 323.15) K. J. Chem. Eng. Data 55, 2108–2115 (2010)CrossRefGoogle Scholar
  8. 8.
    Nandi, P., Das, B.: Electrical conductances of sodium carboxymethylcellulose in acetonitrile (1) + water (2) mixed solvent media in the presence of sodium chloride at 308.15 K. J. Chem. Eng. Data 56, 2870–2876 (2011)CrossRefGoogle Scholar
  9. 9.
    De, R., Ray, D., Das, B.: Influence of temperature, added electrolyte, and polymer molecular weight on the counterion condensation phenomenon in aqueous solution of sodium polystyrenesulfonate: a scaling theory approach. RSC Adv. 5, 54890–54898 (2015)CrossRefGoogle Scholar
  10. 10.
    Capuano, F., Mangiapia, G., Ortona, O., d’Errico, G., Sartorio, R.: Sodium chloride molar conductance in different poly(ethylene glycol)–water mixed solvents. J. Solut. Chem. 36, 617–629 (2007)CrossRefGoogle Scholar
  11. 11.
    Fuoss, R.M.: Paired ions: dipolar pairs as subset of diffusion pairs. Proc. Natl. Acad. Sci. U.S.A. 75, 16–20 (1978)CrossRefGoogle Scholar
  12. 12.
    Fuoss, R.M.: Conductance-concentration function for the paired ion model. J. Phys. Chem. 82, 2427–2440 (1978)CrossRefGoogle Scholar
  13. 13.
    Zhang, N., Zhang, J., Zhang, Y., Bai, J., Huo, T., Wei, X.: Excess molar volumes and viscosities of poly(ethylene glycol) 300 + water at different temperatures. Fluid Phase Equilib. 313, 7–10 (2012)CrossRefGoogle Scholar
  14. 14.
    Zhang, K., Yang, J., Yu, X., Zhang, J., Wei, X.: Densities and viscosities for binary mixtures of poly(ethylene glycol) 400 + dimethyl sulfoxide and poly(ethylene glycol) 600 + water at different temperatures. J. Chem. Eng. Data 56, 3083–3088 (2011)CrossRefGoogle Scholar
  15. 15.
    Han, F., Zhang, J., Chen, G., Wei, X.: Density, viscosity, and excess properties for aqueous poly(ethylene glycol) solutions from (298.15 to 323.15) K. J. Chem. Eng. Data 53, 2598–2601 (2008)CrossRefGoogle Scholar
  16. 16.
    Lind Jr., J.E., Zwolenik, J.J., Fuoss, R.M.: Calibration of conductance cells at 25° with aqueous solutions of potassium chloride. J. Am. Chem. Soc. 81, 1557–1559 (1959)CrossRefGoogle Scholar
  17. 17.
    Das, B., Hazra, D.K.: Apparent and partial molal volumes of selected symmetrical tetraalkylammonium bromides in 2-methoxy-1-ethanol at 25°C. J. Chem. Eng. Data 36, 403–405 (1991)CrossRefGoogle Scholar
  18. 18.
    Das, B., Saha, N.: Electrical conductances of some symmetrical tetraalkylammonium salts in methanol, acetonitrile, and methanol(1) + acetonitrile(2) mixtures at 298.15 K. J. Chem. Eng. Data 45, 2–5 (2000)CrossRefGoogle Scholar
  19. 19.
    Fuoss, R.M., Shedlovsky, T.: Extrapolation of conductance data for weak electrolytes. J. Am. Chem. Soc. 71, 1496–1498 (1949)CrossRefGoogle Scholar
  20. 20.
    Marcus, Y.: Ion Solvation. Wiley, New York (1985)Google Scholar
  21. 21.
    Watcher, W., Buchner, R., Hefter, G.: Hydration of tetraphenylphosphonium and tetraphenylborate ions by dielectric relaxation spectroscopy. J. Phys. Chem. B. 110, 5147–5154 (2006)CrossRefGoogle Scholar
  22. 22.
    Conway, B.E.: In: Conway, B.E., White, R.E. (eds.) Modern Aspects of Electrochemistry. Kluwer Academic/Plenum, New York (2002)Google Scholar
  23. 23.
    Tassi, L.: Ionic association of alkali-metal bromides in 2-methoxyethanol. J. Chem. Soc., Faraday Trans. 89, 733–738 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryBasirhat CollegeBasirhatIndia
  2. 2.Department of ChemistryPresidency UniversityKolkataIndia

Personalised recommendations