The Volumetric Properties of Ternary Solutions of Glycine + H2O + LiBr, NaBr or KBr at T = (293.15–313.15) K and Ambient Pressure

  • Hamid Reza RafieeEmail author
  • Roshanak Amirian


In this study, densities of binary and ternary solutions containing (glycine + water), (glycine + water + lithium bromide), (glycine + water + potassium bromide) and (glycine + water + sodium bromide) have been measured using a vibrating U-tube densimeter at T = (293.15 to 313.15) K. The apparent molar volumes have been calculated from the obtained density data. Apparent molar volumes at infinite dilution, \( V_{\phi }^{0} \), were fitted to a Redlich–Meyer type equation. The limiting apparent molar expansibility, \( E_{\phi }^{0} \), was calculated from the first derivative of the limiting apparent molar volumes with respect to temperature. By analyzing the obtained volumetric data, the hydration numbers for glycine, nH, were also calculated in these solutions. The results indicate that the apparent molar volumes increase with temperature. Moreover, it has been proven that glycine acts as a structure maker in the studied solutions.


Volumetric properties Glycine Lithium bromide Potassium bromide Sodium bromide 



  1. 1.
    Zafarani-Moattar, M.T., Izadi, F.: Effect of temperature and concentration of KBr or KNO3 on the volumetric and transport properties of aqueous solutions of tri-potassium citrate. J. Chem. Eng. Data 56, 2818–2829 (2011)CrossRefGoogle Scholar
  2. 2.
    Krumgalz, B.S., Pogorelsky, R., Pitzer, K.S.: Volumetric properties of single aqueous electrolytes from xero to saturation concentration at 298.15°K represented by Pitzer’s ion-interaction equations. J. Phys. Chem. Ref. Data. 25, 663–689 (1996)CrossRefGoogle Scholar
  3. 3.
    Rafiee, H.R., Frouzesh, F.: Volumetric properties for glycine and l-serine in aqueous solutions of 1-ethyl-3-methylimidazolium hydrogen sulfate ([Emim][HSO4]) at T = (293.15–313.15) K and ambient pressure. J. Chem. Thermodyn. 102, 398–405 (2016)CrossRefGoogle Scholar
  4. 4.
    Roy, M.N., De, P., Sikdar, P.S.: Study of solvation consequences of α-amino acids in aqueous ionic liquid solution probed by physicochemical approach. Fluid Phase Equilib. 352, 7–13 (2013)CrossRefGoogle Scholar
  5. 5.
    Doupont, J., De Souza, R.F., Suarez, P.A.Z.: Ionic liquid (molten salts) phase organometallic catalysis. Chem. Rev. 102, 3667–3692 (2002)CrossRefGoogle Scholar
  6. 6.
    Parmar, M.L., Dhiman, D.K.: A study on partial molar volumes of some mineral salts in water at various temperatures. J. Indian. Chem. Soc. 79, 729–731 (2002)Google Scholar
  7. 7.
    Apelblat, A., Manzurola, E.: Volumetric properties of water, and solutions of sodium chloride and potassium chloride at temperatures from T = 277.15 K to T = 343.15 K at molalities of (0.1, 0.5, and 1.0) mol·kg−1. J. Chem. Thermodyn. 31, 869–893 (1999)CrossRefGoogle Scholar
  8. 8.
    Fauchere, J.L., Pliska, V.: Hydrophobic parameters of amino acid side chains from the partitioning of N-acetyl-amino-acid amids. Eur. J. Med. Chem. 18, 369–375 (1983)Google Scholar
  9. 9.
    Barrett, G.: Chemistry and Biochemistry of the Amino Acids. Springer Science & Business Media, New York (2012)Google Scholar
  10. 10.
    Rodriguez, H., Soto, A., Arce, A., Khoshkbarchi, M.K.: Apparent molar volume, isentropic compressibility, refractive index, and viscosity of DL-alanine in aqueous NaCl solutions. J. Solution Chem. 32, 53–63 (2003)CrossRefGoogle Scholar
  11. 11.
    Pradhan, A.A., Vera, J.H.: Effect of anions on the solubility of zwitterionic amino acids. J. Chem. Eng. Data 45, 140–143 (2000)CrossRefGoogle Scholar
  12. 12.
    Clarke, R.G., Hnedkovsky, L., Tremaine, P.R., Majer, V.: Amino acids under hydrothermal conditions: apparent molar heat capacities of aqueousα-alanine, β-alanine, glycine, and proline at temperatures from 298 to 500 K and pressures up to 30.0 MPa. J. Phys. Chem B 104, 11781–11793 (2000)CrossRefGoogle Scholar
  13. 13.
    Sinha, B., Dakua, V.K., Roy, M.N.: Apparent molar volumes and viscosity B-coefficients of some amino acids in aqueous tetramethylammonium iodide solutions at 298.15 K. J. Chem. Eng. Data. 52, 1768–1772 (2007)CrossRefGoogle Scholar
  14. 14.
    Kumar, H., Kaur, K., Kumar, S.: Apparent molar volumes and transport behavior of glycine and l-valine in aqueous solutions of tripotassium citrate at T = (308.15 and 318.15) K. J. Mol. Liq. 162, 89–94 (2011)CrossRefGoogle Scholar
  15. 15.
    Redlich, O., Meyer, D.M.: The molal volumes of electrolytes. Chem. Rev. 64, 221–227 (1964)CrossRefGoogle Scholar
  16. 16.
    Krakowiak, J., Wawer, J., Panuszko, A.: The hydration of the protein stabilizing agents: trimethylamine-N-oxide, glycine and its N-methyl derivatives—the volumetric and compressibility studies. J. Chem. Thermodyn. 60, 179–190 (2013)CrossRefGoogle Scholar
  17. 17.
    Kumar, H., Singla, M., Jindal, R.: Interactions of glycine, l-alanine and l-valine with aqueous solutions of trisodium citrate at different temperatures: a volumetric and acoustic approach. J. Chem. Thermodyn. 67, 170–180 (2013)CrossRefGoogle Scholar
  18. 18.
    Banipal, T.S., Kaur, J., Banipal, P.K., Singh, K.: Study of interactions between amino acids and zinc chloride in aqueous solutions through volumetric measurements at T = (288.15 to 318.15) K. J. Chem. Eng. Data 53, 1803–1816 (2008)CrossRefGoogle Scholar
  19. 19.
    Rima, F.R., Monirul Islam, M., Nazrul Islam, M.: Excess volume of water in hydrate complexes of some α-amino acids. J. Chem. Eng. Data 58, 2991–2997 (2013)CrossRefGoogle Scholar
  20. 20.
    Zhenning, Y., Wang, J., Kong, W., Lu, J.: Effect of temperature on volumetric and viscosity properties of some α-amino acids in aqueous calcium chloride solutions. Fluid Phase Equilib. 215, 143–150 (2004)CrossRefGoogle Scholar
  21. 21.
    Ananthaswamy, J., Atkinson, G.: Thermodynamics of concentrated electrolyte mixtures. 4. Pitzer–Debye–Hückel limiting slopes for water from 0 to 100 °C and from 1 atm to 1 kbar. J. Chem. Eng. Data 29, 81–87 (1984)CrossRefGoogle Scholar
  22. 22.
    Fang, S.H., Ren, D.H.: Effect of 1-ethyl-3-methylimidazolium bromide ionic liquid on the volumetric behavior of some aqueous L-amino acids solutions. J. Chem. Eng. Data 58, 845–850 (2013)CrossRefGoogle Scholar
  23. 23.
    Friedman, H.L., Krishnan, C.V.: Studies of hydrophobic bonding in aqueous alcohols: enthalpy measurements and model calculations. J. Solution Chem. 2, 119–140 (1973)CrossRefGoogle Scholar
  24. 24.
    Frank, S.H., Evans, M.W.: Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 13, 507–532 (1945)CrossRefGoogle Scholar
  25. 25.
    Tomé, L.I.N., Jorge, M., Gomes, J.R.B., Coutinho, J.A.P.: Toward an understanding of the aqueous solubility of amino acids in the presence of salts: a molecular dynamics simulation study. J. Phys. Chem B. 114, 16450–16459 (2010)CrossRefGoogle Scholar
  26. 26.
    Fyta, M., Kalcher, I., Dzubiella, J., Vrbka, L., Netz, R.R.: Ionic force field optimization based on single-ion and ion-pair solvation properties. J. Chem. Phys. 132, 024911 (2010)CrossRefGoogle Scholar
  27. 27.
    Luisa, F.A., Macedo, E.A., Pinho, P.S.: The effect of ammonium sulfate on the solubility of amino acids in water at (298.15 and 323.15) K. J. Chem. Thermodyn. 41, 193–196 (2009)CrossRefGoogle Scholar
  28. 28.
    Rafiee, H.R., Frouzesh, F.: Study of apparent molar volumes for ionic liquid, 1-ethyl-3-methyl imidazolium chloride in aqueous lithium nitrate, lithium bromide, and lithium chloride solutions at temperatures (298.15 to 318.15) K. J. Chem. Eng. Data. 60, 2958–2965 (2015)CrossRefGoogle Scholar
  29. 29.
    Hepler, L.G.: Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 47, 4613–4617 (1969)CrossRefGoogle Scholar
  30. 30.
    Burakowski, A., Glinski, J.: Hydration numbers of nonelectrolytes from acoustic methods. Chem. Rev. 112, 2059–2081 (2011)CrossRefGoogle Scholar
  31. 31.
    Millero, F.J., Surdo, A.L., Shin, C.: The apparent molal volumes and adiabatic compressibilities of aqueous amino acids at 25 °C. J. Phys. Chem. 82, 784–792 (1978)CrossRefGoogle Scholar
  32. 32.
    Rajagopal, K., Gladson, S.E.: Thermodynamic analysis of homologous α-amino acids in aqueous potassium fluoride solutions at different temperatures. J. Solution Chem. 41, 646–679 (2012)CrossRefGoogle Scholar
  33. 33.
    Mota, P.C., Ferreira, O., Hnedkovsky, L., Pinho, S.P., Cibulka, I.: Partial molar volumes of l-serine and l-threonine in aqueous ammonium sulfate solutions at (278.15, 288.15, 298.15, and 308.15) K. J. Solution Chem. 43, 283–297 (2014)CrossRefGoogle Scholar
  34. 34.
    Lepori, L., Gianni, P.: Partial molar volumes of ionic and nonionic organic solutes in water: a simple additivity scheme based on the intrinsic volume approach. J. Solution Chem. 29, 405–447 (2000)CrossRefGoogle Scholar
  35. 35.
    Munde, M.M., Kishore, N.: Volumetric properties of aqueous 2-chloroethanol solutions and volumes of transfer of some amino acids and peptides from water to aqueous 2-chloroethanol solutions. J. Solution Chem. 32, 791–802 (2003)CrossRefGoogle Scholar
  36. 36.
    Berlin, E., Pallansch, M.J.: Densities of several proteins and L-amino acids in the dry state. Indian J. Phys. Chem. 72, 1887–1889 (1968)CrossRefGoogle Scholar
  37. 37.
    Singh, V., Chhotaray, P.K., Binapal, P.K., Banipal, T.S., Gardas, R.L.: Volumetric properties of amino acids in aqueous solutions of ammonium based protic ionic liquids. Fluid Phase Equilib. 385, 258–274 (2015)CrossRefGoogle Scholar
  38. 38.
    Hossain, M.S., Biswas, T.K., Kabiraz, DCh., Islam, MdN, Huque, M.E.: Studies on sodium dodecylsulfate in aqueous and in aqueous amino acid solutions: volumetric and viscometric approaches. J. Chem. Thermodyn. 71, 6–13 (2014)CrossRefGoogle Scholar
  39. 39.
    Owaga, T., Mizutani, K., Yasuda, M.: The volume, adiabatic compressibility, and viscosity of amino acids in aqueous alkali-chloride solutions. Bull. Chem. Soc. Jpn 57, 2064–2068 (1984)CrossRefGoogle Scholar
  40. 40.
    Marcus, Y.: Electrostriction in electrolyte solutions. Chem. Rev. 111, 2761–2778 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physical Chemistry, Faculty of ChemistryRazi UniversityKermanshahIran

Personalised recommendations