Advertisement

Journal of Solution Chemistry

, Volume 48, Issue 6, pp 905–919 | Cite as

Spectral Study of Intermolecular Interactions in Some Sulfolane/Alcoholic Binary Mixtures Using Solvatochromic Measurements

  • Mohsen Sarijloo
  • Morteza JabbariEmail author
  • Ali Farajtabar
Article
  • 28 Downloads

Abstract

Solvatochromic parameters including the Kamlet–Abboud–Taft parameters (α, β, and π*: KAT parameters) and Reichardt’s polarity scale (ET(30)) were measured spectroscopically over the whole mole fraction range of binary mixtures of sulfolane and some alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, iso-butanol, tert-butanol) at 303.15 K. These parameters were obtained based on UV–Vis absorbance of some solvatochromic probes. The spectral changes of these indicators were interpreted in terms of specific and nonspecific dye–solvent interactions. The parameter ET(30) was obtained from electronic absorbance of the betaine dye within the mixtures. Absorbance band shifts of N,N-dimethyl-4-nitroaniline and 4-nitroaniline in concert with absorbance changes of Reichardt’s betaine dye were used to obtain dipolarity/polarizability (π*), hydrogen-bond donating (HBD) acidity (α) and hydrogen-bond accepting (HBA) basicity (β) of the mixtures. The Redlich–Kister equation was applied to the experimental data for different empirical solvatochromic parameters to demonstrate the effect of solvent composition on these parameters in the mixtures.

Keywords

Solvatochromic shift KAT parameters Reichardt polarity parameter Sulfolane/alcohol mixture Redlich–Kister model UV–Vis spectroscopy 

Notes

Acknowledgement

The authors gratefully acknowledge the Research Council of Damghan University for providing the laboratory facilities.

References

  1. 1.
    Labban, A.S., Marcus, Y.: Solvatochromic parameters of ethanolamines. J. Chem. Soc. Faraday Trans. 93, 77–79 (1997)CrossRefGoogle Scholar
  2. 2.
    Farajtabar, A., Jaberi, F., Gharib, F.: Preferential solvation and solvation shell composition of free base and protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin in aqueous organic mixed solvents. Spectrochim. Acta A 83, 213–220 (2011)CrossRefGoogle Scholar
  3. 3.
    Reichardt, C., Welton, T.: Solvents and Solvent Effects in Organic Chemistry, 4th edn. VCH, New York (2011)Google Scholar
  4. 4.
    Frutos-Puerto, S., Aguilar, M.A., Fdez Galván, I.: Theoretical study of the preferential solvation effect on the solvatochromic shifts of para-nitroaniline. J. Phys. Chem. B 117, 2466–2474 (2013)CrossRefGoogle Scholar
  5. 5.
    Reichardt, C.: Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94, 2319–2358 (1994)CrossRefGoogle Scholar
  6. 6.
    Herodes, K., Leito, I., Koppel, I., Roses, M.: Solute–solvent and solvent–solvent interactions in binary solvent mixtures. Part 8. The E T(30) polarity of binary mixtures of formamides with hydroxylic solvents. J. Phys. Org. Chem. 12, 109–115 (1999)CrossRefGoogle Scholar
  7. 7.
    Kohantorabi, M., Salari, H., Fakhraee, M., Gholami, M.R.: Surfactant binary systems: ab initio calculations, preferential solvation, and investigation of solvatochromic parameters. J. Chem. Eng. Data 61, 255–263 (2016)CrossRefGoogle Scholar
  8. 8.
    Nunes, N., Elvas-Leitão, R., Martins, F.: UV–Vis spectroscopic study of preferential solvation and intermolecular interactions in methanol/1-propanol/acetonitrile by means of solvatochromic probes. Spectrochim. Acta A 124, 470–479 (2014)CrossRefGoogle Scholar
  9. 9.
    El Seoud, O.A.: Solvation in pure and mixed solvents: some recent developments. Pure Appl. Chem. 79, 1135–1151 (2007)CrossRefGoogle Scholar
  10. 10.
    Umadevi, M., Suvitha, A., Latha, K., Rajkumar, B.J.M., Ramakrishnan, V.: Spectral investigations of preferential solvation and solute–solvent interactions of 1,4-dimethylamino anthraquinone in CH2Cl2/C2H5OH mixtures. Spectrochim. Acta A 67, 910–915 (2007)CrossRefGoogle Scholar
  11. 11.
    Giusti, L.A., Marini, V.G., Machado, V.G.: solvatochromic behavior of 1-(p-dimethylaminophenyl)-2-nitroethylene in 24 binary solvent mixtures composed of amides and hydroxylic solvents. J. Mol. Liq. 150, 9–15 (2009)CrossRefGoogle Scholar
  12. 12.
    Marcus, Y.: The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev. 21, 409–416 (1993)CrossRefGoogle Scholar
  13. 13.
    Trivedi, S., Sarkar, A., Pandey, S.: Solvatochromic absorbance probe behavior within 1-butyl-3-methylimidazolium hexafluorophosphate + propylene carbonate: preferential solvation or solvent–solvent interaction? Chem. Eng. J. 147, 36–42 (2009)CrossRefGoogle Scholar
  14. 14.
    Tilstam, U.: Sulfolane: a versatile dipolar aprotic solvent. Org. Process Res. Dev. 16, 1273–1278 (2012)CrossRefGoogle Scholar
  15. 15.
    Mesquita, F.M.R., Feitosa, F.X., Aznar, M., de Sant’Ana, H.B., Santiago-Aguiar, R.S.: Density, viscosities, and excess properties for binary mixtures of sulfolane + alcohols and sulfolane + glycols at different temperatures. J. Chem. Eng. Data 59, 2196–2206 (2014)CrossRefGoogle Scholar
  16. 16.
    Kamlet, M.J., Abboud, J.L., Taft, R.W.: The solvatochromic comparison method. 6. The π* scale of solvent polarities. J. Am. Chem. Soc. 99, 6027–6038 (1977)CrossRefGoogle Scholar
  17. 17.
    Kamlet, M.J., Taft, R.W.: The solvatochromic comparison method. I. The β-Scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc. 98, 377–383 (1976)CrossRefGoogle Scholar
  18. 18.
    Taft, R.W., Kamlet, M.J.: The solvatochromic comparison method. 2. The α-scale of solvent hydrogen-bond donor (HBD) acidities. J. Am. Chem. Soc. 98, 2886–2894 (1976)CrossRefGoogle Scholar
  19. 19.
    Helburn, R., Bartoli, M., Pohaku, K., Maxka, J., Compton, D., Creedon, B., Stimpson, C.: Solvatochromic properties of long alkyl chain π* indicators: comparison of N, N-dialkyl-4-nitroanilines and alkyl 4-nitrophenyl ethers. J. Phys. Org. Chem. 20, 321–331 (2007)CrossRefGoogle Scholar
  20. 20.
    Redlich, O., Kister, A.T.: Thermodynamics of nonelectrolyte solutions. xyt relations in a binary system. Indust. Eng. Chem. 40, 341–345 (1948)CrossRefGoogle Scholar
  21. 21.
    Mancini, P.M.E., Terenzani, A., Adam, C., Pérez, A., Vottero, L.R.: Characterization of solvent mixtures. Part 8, Preferential solvation of chemical probes in binary solvent systems of a polar aprotic hydrogen-bond acceptor solvent with acetonitrile or nitromethane. Solvent effects on aromatic nucleophilic substitution reactions. J. Phys. Org. Chem. 12, 207–220 (1999)CrossRefGoogle Scholar
  22. 22.
    Beniwal, V., Kumar, A.: Synergistic effects and correlating polarity parameters in binary mixtures of ionic liquids. Chem. Phys. Chem. 16, 1026–1034 (2015)CrossRefGoogle Scholar
  23. 23.
    Bosch, E., Rosés, M., Herodes, K., Koppel, I., Leito, I., Koppel, I., Taal, V.: Solute–solvent and solvent–solvent interactions in binary solvent mixtures. 2. Effect of temperature on the E T(30) polarity parameter of dipolar hydrogen bond acceptor–hydrogen bond donor mixtures. J. Phys. Org. Chem. 9, 403–410 (1996)CrossRefGoogle Scholar
  24. 24.
    da Silva, D.C., Ricken, I., da Silva, M.A., Machado, V.G.: Solute–solvent and solvent–solvent interactions in the preferential solvation of Brooker’s merocyanine in binary solvent mixtures. J. Phys. Org. Chem. 15, 420–427 (2002)CrossRefGoogle Scholar
  25. 25.
    Maksimović, Z.B., Reichardt, C., Spirić, A.: Determination of empirical parameters of solvent polarity E T in binary mixtures by solvatochromic pyridinium-N-phenol betaine dyes. Fresenius J. Anal. Chem. 270, 100–104 (1974)CrossRefGoogle Scholar
  26. 26.
    Gonzalez, J.A., Domanska, U.: Thermodynamics of mixtures containing a very strongly polar compound. Part I. Experimental phase equilibria (solid–liquid and liquid–liquid) for sulfolane + alkan-1-ols systems analysis of some mixtures including sulfolane in terms of disquac. PCCP 3, 1034–1042 (2001)CrossRefGoogle Scholar
  27. 27.
    Jannelli, L., Lopez, A., Saiello, S.: Thermodynamic and physical properties of binary mixtures involving sulfolane. Excess volumes and dielectric constants of benzonitrile–sulfolane and acetonitrile–sulfolane systems. J. Chem. Eng. Data 25, 259–263 (1980)CrossRefGoogle Scholar
  28. 28.
    Pansini, M., Jannelli, L.: Mixing enthalpies of six binary systems involving sulfolane over the entire composition range, at 303.16 K. J. Chem. Eng. Data 31, 157–160 (1986)CrossRefGoogle Scholar
  29. 29.
    Huyskens, P.: Molecular structure of liquid alcohols. J. Mol. Struct. 100, 403–414 (1983)CrossRefGoogle Scholar
  30. 30.
    Patel, S., Gorai, S., Malik, P.K.: Preferential solvation through selective functional group recognition in p-nitroaniline. J. Photochem. Photobiol., A 219, 76–83 (2011)CrossRefGoogle Scholar
  31. 31.
    Duereh, A., Sato, Y., Smith, R.L., Inomata, H.: Analysis of the cybotactic region of two renewable lactone–water mixed-solvent systems that exhibit synergistic Kamlet–Taft basicity. J. Phys. Chem. B 120, 4467–4481 (2016)CrossRefGoogle Scholar
  32. 32.
    Hunter, C.A.: Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. Angew. Chem. Int. Ed. 43, 5310–5324 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mohsen Sarijloo
    • 1
  • Morteza Jabbari
    • 1
    Email author
  • Ali Farajtabar
    • 2
  1. 1.School of ChemistryDamghan UniversityDamghanIran
  2. 2.Department of Chemistry, Jouybar BranchIslamic Azad UniversityJouybarIran

Personalised recommendations