Journal of Solution Chemistry

, Volume 48, Issue 4, pp 455–488 | Cite as

Density and Excess Volume for Four Systems Involving Eugenol and Furan

  • Christophe CoqueletEmail author
  • Eric Auger
  • Alain Valtz


Density and speed of sound measurements have been performed, at atmospheric pressure, using an Anton Paar digital vibrating tube densitometer for pure ethanol, 1-octanol, n-hexane, furan and eugenol, from 278.15 to 323.15 K and for the binary mixtures of furan + ethanol, furan + 1-octanol, eugenol + 1-octanol and eugenol + n-hexane from 278.15 to 323.15 K. Excess molar volumes were calculated and compared. The Redlich–Kister correlation was used to correlate the data. In order to identify the most important molecular interaction contributing to the excess molar volume, the Prigogine–Flory–Patterson theory was applied to correlate and predict the excess molar volumes of the mixtures.


Excess molar volume Partial molar volume Eugenol Furan 



Financial support from the ANR of France through the project Memobiol (ANR-09-CP2D-10-04 MEMOBIOL) is gratefully acknowledged.

Supplementary material

10953_2019_870_MOESM1_ESM.docx (210 kb)
Supplementary material 1 (DOCX 210 kb)


  1. 1.
    Huber, G.W., Iborra, S., Corma, A.: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2009)CrossRefGoogle Scholar
  2. 2.
    Auger, E., Coquelet, C., Valtz, A., Nala, M., Naidoo, P., Ramjugernath, D.: Equilibrium data and GC-PC SAFT predictions for furanic extraction. Fluid Phase Equilib. 430, 57–66 (2016)CrossRefGoogle Scholar
  3. 3.
    Gladstone, J.H.: Refraction-equivalents of organic compounds. J. Chem. Soc. 45, 241–259 (1884)CrossRefGoogle Scholar
  4. 4.
    Redlich, O., Kister, A.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)CrossRefGoogle Scholar
  5. 5.
    Desnoyers, J., Perron, G.: Treatment of excess thermodynamic quantities for liquid mixtures. J. Solution Chem. 26, 749–755 (1997)CrossRefGoogle Scholar
  6. 6.
    Rowley, R.L.: DIPPR® Data Compilation of Pure Chemical Properties. Design Institute for Physical Properties (2010)Google Scholar
  7. 7.
    Sharma, N., Kumar, D.: Study and design of eugenol derivatives as potent antioxidant using quantum mechanical method. Int. J. Appl. Pharm. Biol. Res. 1, 24–32 (2016)Google Scholar
  8. 8.
    Patterson, D., Delmas, G.: Corresponding states theories and liquid models. Discuss. Faraday Soc. 49, 98–105 (1970)CrossRefGoogle Scholar
  9. 9.
    Gepert, M., Zorębski, E., Leszczyńska, A.: Is Flory’s model the best tool for studying the thermodynamic properties of any kind of binary mixtures? Fluid Phase Equilib. 233, 157–169 (2005)CrossRefGoogle Scholar
  10. 10.
    Galvao, A.C., Francesconi, A.Z.: Application of the Prigogine–Flory–Patterson model to excess molar enthalpy of binary liquid mixtures containing acetonitrile and 1-alkanol. J. Mol. Liquids 107, 127–139 (2003)CrossRefGoogle Scholar
  11. 11.
    Torres, R.B., Pina, C.G., Francesconi, A.Z.: Application of the Prigogine–Flory–Patterson theory to excess molar volume of binary mixtures of acetonitrile with 1-alkanols. J. Mol. Liq. 139, 110–116 (2008)CrossRefGoogle Scholar
  12. 12.
    Piñeiro, Á., Amigo, A., Bravo, R., Brocos, P.: Re-examination and symmetrization of the adjustable parameters of the ERAS model. Fluid Phase Equilib. 173, 211–239 (2000)CrossRefGoogle Scholar
  13. 13.
    Flory, P.J.: Statistical thermodynamics of liquid mixtures. J. Am. Chem. Soc. 87, 1833–1838 (1965)CrossRefGoogle Scholar
  14. 14.
    Valtz, A., Coquelet, C., Boukais-Belaribi, G., Dahmani, A., Belaribi, F.B.: Volumetric properties of binary mixtures of 1,2-dichloroethane with polyethers from (283.15 to 333.15) K and at atmospheric pressure. J. Chem. Eng. Data 56, 1629–1657 (2011)CrossRefGoogle Scholar
  15. 15.
    Iloukhani, H., Rezaei-Sameti, M.: Volumetric properties of methylcyclohexane with n-alkanes (C5–C10) at 293.15, 298.15 and 303.15 K. Comparison with Prigogine–Flory–Patterson theory. J. Mol. Liq. 126, 62–68 (2006)CrossRefGoogle Scholar
  16. 16.
    Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10, National Institute of Standards and Technology (2013)Google Scholar
  17. 17.
    Guthrie Jr., G.B., Scott, D.W., Hubbard, W.N., Katz, C., McCullough, J.P., Gross, M.E., Williamson, K.D., Waddington, G.: Thermodynamic properties of furan. J. Am. Chem. Soc. 74, 4662–4669 (1952)CrossRefGoogle Scholar
  18. 18.
    Karabaev, M.K.: Kinetische, thermische und kalorische Eigenschaften von fluessigen Eugenol. Izv. Akad. Nauk Uzb. SSR Ser. Fiz. Mat. Nauk, pp. 72–74 (1983)Google Scholar
  19. 19.
    Mel’nikov, G.A., Vervenko, V.N., Otpuschennikov, N.F.: Complex study of the elastic and thermal properties of hydrocarbons and their halogen derivatives by the acoustic method. Zh. Fiz. Khim. 62, 798 (1988). in Russian Google Scholar
  20. 20.
    Rubini, K., Francesconi, R., Bigi, A., Comelli, F.: Excess molar enthalpies and heat capacities of dimethyl sulfoxide + seven normal alkanols at 303.15 K and atmospheric pressure. Thermochim. Acta 452, 124–127 (2007)CrossRefGoogle Scholar
  21. 21.
    Hansen, C.M.: Hansen Solubility Parameters: A User’s Handbook. CRC Press, Boca Raton (2002)Google Scholar
  22. 22.
    Mulder, M.H.V., Smolders, C.A.: On the mechanisms of separation of ethanol/water mixtures by pervaporation. I. Calculations of concentration profiles. J. Membr. Sci. 17, 289–307 (1984)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Mines ParisTech PSL University, CTP-Centre of Thermodynamics of ProcessesFontainebleauFrance

Personalised recommendations