Advertisement

Journal of Solution Chemistry

, Volume 48, Issue 1, pp 82–103 | Cite as

Volumetric and Optical Properties of Dimethylvinylethoxysilane with n-Alkanes (C7 to C10) at Temperatures in the Range (298.15 to 318.15) K

  • Jing Jin
  • Fangjun Shao
  • Hong DongEmail author
  • Chuan WuEmail author
Article
  • 21 Downloads

Abstract

Densities and refractive indices are investigated for four binary mixture systems of dimethylvinylethoxysilane with n-heptane, n-octane, n-nonane and n-decane at different temperatures (298.15, 303.15, 308.15, 313.15 and 318.15 K) and atmospheric pressure. From these experimental data, the excess molar volume, isobaric coefficient of thermal expansion, deviation in refractive index, molar refraction, and deviation in the molar refraction have been calculated. The computed quantities have been fitted with the Redlich–Kister equation to derive the coefficients and estimate the standard deviations. The values of the partial excess volume at infinite dilution were calculated using the coefficients of the Redlich–Kister smoothing equation. The effects of composition and temperature on these properties are discussed.

Keywords

Organosilicon compound Density Refractive index Derived properties 

Notes

Acknowledgements

This work was supported by the school-enterprise cooperation project for University Access Engineer of Zhejiang (Grant No. FG2017204).

Supplementary material

10953_2019_843_MOESM1_ESM.docx (128 kb)
Supplementary material 1 (DOCX 127 kb)

References

  1. 1.
    Dong, H., Yue, Y., Wu, C., Lai, G.Q.: Excess molar volumes of 2,4,6,8-tetramethylcyclotetrasiloxane with benzene, toluene, and xylene at T = (288.15, 298.15, and 308.15) K. J. Chem. Eng. Data 57, 1050–1056 (2012)Google Scholar
  2. 2.
    Zhang, Y.D., Dong, H., Yue, Y., Wu, C.: Effect of temperature and composition on the density, refractive index, and excess quantities of binary mixtures of 2,4,6,8-tetramethyl-2,4,6,8-tetraethenylcyclotetrasiloxane with aromatic hydrocarbons. J. Chem. Thermodyn. 57, 114–130 (2013)Google Scholar
  3. 3.
    Yu, L.J., Dong, H., Wu, C., Zhang, Y.D.: The density, refractive index, and thermodynamic behaviour of binary mixtures of 1,3-diethenyl-1,1,3,3-tetramethyldisiloxane with aromatic hydrocarbons. J. Chem. Thermodyn. 72, 139–151 (2014)Google Scholar
  4. 4.
    Zhang, Y.D., Dong, H., Wu, C., Yu, L.J.: Thermophysical properties of binary mixtures of triethoxysilane, methyltriethoxysilane, vinyltriethoxysilane and 3-mercaptopropyltriethoxysilane with ethylbenzene at various temperatures. J. Chem. Thermodyn. 76, 45–55 (2014)Google Scholar
  5. 5.
    Yu, L.J., Hu, Y.Q., Dong, H., Wu, C.: The physicochemical properties of 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl)cyclotrisiloxane with various aromatic hydrocarbons at T = (308.15 to 323.15) K. J. Chem. Thermodyn. 96, 117–126 (2016)Google Scholar
  6. 6.
    Brown, I., Ewald, A.H.: Liquid–vapour equilibria. II. The system benzene–n-heptane. Aust. J. Chem. 4, 198–212 (1951)Google Scholar
  7. 7.
    Pomerantz, P.: Synthesis and physical properties of n-heptane and 2,2,4-trimethylpentane. J. Res. Nat. Bur. Stand. 48, 76–81 (1952)Google Scholar
  8. 8.
    Fang, S., Fu, Y.Y., Wang, Q., Zhang, G.Y.: Mixing properties of tris(2-ethylhexyl) phosphate with alkanes at different temperatures and data treatment using several correlation equations based on Eyring’s absolute reaction theory. J. Mol. Liq. 154, 111–116 (2010)Google Scholar
  9. 9.
    Fang, S., Zhao, C.X., He, C.H.: Densities and viscosities of binary mixtures of tri-n-butyl phosphate + cyclohexane, + n-heptane at T = (288.15, 293.15, 298.15, 303.15, and 308.15) K. J. Chem. Eng. Data 53, 2244–2246 (2008)Google Scholar
  10. 10.
    Yang, X., Xing, Y., Li, D., Guo, Y.S., Fang, W.J.: Volumetric and viscous properties at several temperatures for binary mixtures of n-methylpiperazine with methylcyclohexane or n-heptane. J. Chem. Eng. Data 55, 2914–2916 (2010)Google Scholar
  11. 11.
    Landaverde-Cortes, D.C., Estrada-Baltazar, A., Iglesias-Silva, G.A.: Densities and viscosities of MTBE + heptane or octane at p = 0.1 MPa from (273.15 to 363.15) K. J. Chem. Eng. Data 52, 1226–1232 (2007)Google Scholar
  12. 12.
    Lei, Y.T., Chen, Z.Y., An, X.Q., Huang, M.J., Shen, W.G.: Measurements of density and heat capacity for binary mixtures {x benzonitrile + (1 − x) (octane or nonane)}. J. Chem. Eng. Data 55, 4154–4161 (2010)Google Scholar
  13. 13.
    González, E.J., Calvar, N., Gómez, E., Domínguez, Á.: Separation of benzene from alkanes using 1-ethyl-3-methylpyridinium ethylsulfate ionic liquid at several temperatures and atmospheric pressure: effect of the size of the aliphatic hydrocarbons. J. Chem. Thermodyn. 42, 104–109 (2010)Google Scholar
  14. 14.
    Rathnam, M.V., Mankumare, S., Kumar, M.S.S.: Density, viscosity, and speed of sound of (methyl benzoate + cyclohexane), (methyl benzoate + n-hexane), (methyl benzoate + heptane), and (methyl benzoate + octane) at temperatures of (303.15, 308.15, and 313.15) K. J. Chem. Eng. Data 55, 1354–1358 (2010)Google Scholar
  15. 15.
    Balán, J., Morávková, L., Linek, J.: Excess molar volumes of the (cyclohexane + pentane, or hexane, or heptane, or octane, or nonane) systems at the temperature 298.15 K. Chem. Pap. 61, 497–501 (2007)Google Scholar
  16. 16.
    Lago, A., Rivas, M.A., Legido, J., Iglesias, T.P.: Study of static permittivity and density of the systems (n-nonane + monoglyme or diglyme) at various temperatures. J. Chem. Thermodyn. 41, 257–264 (2009)Google Scholar
  17. 17.
    Landaverde-Cortes, D.C., Iglesias-Silva, G.A.: Densities and viscosities of MTBE + nonane or decane at p = 0.1 MPa from (273.15 to 363.15) K. J. Chem. Eng. Data 53, 288–292 (2008)Google Scholar
  18. 18.
    de Cominges, B.E., Pineiro, M.M., Mascato, E., Mosteiro, L., Lglesias, T.P., Legido, J.L.: Relative permittivities of binary mixtures of 1-butanol + n-alkane at 298.15 K. J. Therm. Anal. Calorim. 72, 129–133 (2003)Google Scholar
  19. 19.
    Prezhdo, O.V., Switek, L., Zubkova, V.V., Prezhdo, V.V.: The role of intermolecular interactions in the electro-optical Kerr effect in liquid alkanes. Acta Phys. Pol. A 108, 429–447 (2005)Google Scholar
  20. 20.
    Sabater, G., Ortega, J.: Excess properties and isobaric vapor–liquid equilibria for four binary systems of alkyl (methyl to butyl) methanoates with decane. Fluid Phase Equilibr. 291, 18–31 (2010)Google Scholar
  21. 21.
    Vaisarová, V., Chvalovský, V.: Organosilicon compounds. LVI. Dipole moments of substituted vinylsilanes and phenylsilanes. Collect. Czech. Chem. Commun. 33, 859–865 (1968)Google Scholar
  22. 22.
    Redlich, O., Kister, A.T.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)Google Scholar
  23. 23.
    Rodríguez, A., Canosa, A.J., Tojo, J.: Binary mixture properties of methyl tert-butyl ether with hexane or heptane or octane or nonane from 288.15 K to 298.15 K. J. Chem. Eng. Data 44, 666–671 (1999)Google Scholar
  24. 24.
    Domańska, U.: The excess molar volumes of (hydrocarbon + branched chain ether) systems at 298.15 K and 308.15 K, and the application of PFP theory. Fluid Phase Equilib. 130, 207–222 (1996)Google Scholar
  25. 25.
    Liu, H., Zhu, L.: Excess molar volumes and viscosities of binary systems of butylcyclohexane with n-alkanes (C7 to C14) at T = 293.15 K to 313.15 K. J. Chem. Eng. Data 59, 369–375 (2014)Google Scholar
  26. 26.
    Kermanpour, F., Niakan, H.Z., Sharifi, T.: Density and viscosity measurements of binary alkanol mixtures from (293.15 to 333.15) K at atmospheric pressure. J. Chem. Eng. Data 58, 1086–1091 (2013)Google Scholar
  27. 27.
    Peralta, R.D., Infante, R., Cortez, G., Cisneros, A., Wisniak, J.: Densities and excess volumes of benzene with ethyl acrylate, butyl acrylate, methyl methacrylate, and styrene at 298.15 K. Thermochim. Acta 398, 39–46 (2003)Google Scholar
  28. 28.
    Krakowiak, J., Śmiechowski, M.: Excess molar volume and viscosity deviation for binary mixtures of γ-butyrolactone with dimethyl sulfoxide. J. Chem. Thermodyn. 110, 57–64 (2017)Google Scholar
  29. 29.
    Gómez, E., González, B., Calvar, N., Tojo, E., Domínguez, Á.: Physical properties of pure 1-ethyl-3-methylimidazolium ethylsulfate and its binary mixtures with ethanol and water at several temperatures. J. Chem. Eng. Data 51, 2096–2102 (2006)Google Scholar
  30. 30.
    Brocos, P., Piñeiro, Á., Bravo, R., Amigo, A.: Refractive indices, molar volumes and molar refractions of binary liquid mixtures: concepts and correlations. Phys. Chem. Chem. Phys. 5, 550–557 (2003)Google Scholar
  31. 31.
    Sudhakar, S.D., Chandrashekhar, P.P., Dilip, V.P.: Density, speed of sound, and refractive index of aqueous binary mixtures of some glycol ethers at T = 298.15 K. J. Chem. Eng. Data 55, 3962–3968 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Taizhou Vocational College of Science & TechnologyTaizhouChina
  2. 2.Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of Education, Hangzhou Normal UniversityHangzhouChina
  3. 3.Collaborative Innovation Center for the Manufacture of Fluorine and Silicone Fine Chemicals and MaterialsHangzhouChina

Personalised recommendations