Journal of Solution Chemistry

, Volume 48, Issue 1, pp 1–14 | Cite as

Volumetric Behavior and Vapor–Liquid Equilibrium of Dimethyl Disulfide + n-Alkanol Binary Mixtures

  • Najla Ben Mahdoui
  • Manuela Artal
  • Monia Hichri
  • Carlos LafuenteEmail author


In this paper, we report densities at 303.15 and 323.15 K and at atmospheric pressure (p = 0.1 MPa) of the binary mixtures containing dimethyl disulfide and a linear alkanol (methanol, ethanol, 1-propanol or 1-butanol). The isothermal vapor–liquid equilibrium for these systems was also determined at the same temperatures while the pressure range for vapor–liquid equilibrium measurement depends on both the mixture and temperature considered. The vapor–liquid equilibrium data were found to be thermodynamically consistent. From these data experimental excess volumes and excess Gibbs functions were obtained and correlated with composition using the Redlich–Kister polynomial expansion and the Wilson equation, respectively. The values of both excess properties were positive. The excess volumes, unlike the excess Gibbs functions, increase with the length of the n-alkanol chain.


n-Alkanols Dimethyl disulfide Isothermal vapor–liquid equilibrium Volumetric behavior 



This research was supported by Gobierno de Aragón (Grant E31_17R), Fondo de Desarrollo Regional “Construyendo Europa desde Aragón” and the Ministry of superior education and scientific research of Tunisia. The authors would like to thank their financial assistance.

Supplementary material

10953_2019_841_MOESM1_ESM.docx (68 kb)
Supplementary material 1 (DOCX 68 kb)


  1. 1.
    Dawe, R.A.: Modern Petroleum Technology, vol. 1, Upstream, 6th edn. Institute of Petroleum (2002)Google Scholar
  2. 2.
    Meyers, A.R.: Handbook of Petroleum Refining Processes, 3rd edn. McGraw-Hill Education, New York (2003)Google Scholar
  3. 3.
    Treese, S.A., Pujado, P.R., Jones, D.S.J.: Handbook of Petroleum Processing, 2nd edn. Springer, New York (2015)CrossRefGoogle Scholar
  4. 4.
    Speight, J.G.: The Chemistry and Technology of Petroleum, 4th edn. CRC Press, Boca Raton (2006)Google Scholar
  5. 5.
    Gary, J.H., Handwerk, G.E., Kaiser, M.J.: Petroleum Refining: Technology and Economics, 5th edn. CRC Press, Boca Raton (2007)Google Scholar
  6. 6.
    Leffler, L.W.: Petroleum Refining in Nontechnical Language, 4th edn. PennWell Books, Houston (2008)Google Scholar
  7. 7.
    Hoffert, W.H., Wendtner, K.: Reaction of sulphur, hydrogen sulphide, and mercaptans with saturated hydrocarbons. J. Inst. Pet. 35, 171–192 (1949)Google Scholar
  8. 8.
    Vistisen, P.Ø., Zeuthen, P.: Reactions of organic sulfur and nitrogen compounds in the FCC pretreater and the FCC unit. Ind. Eng. Chem. Res. 47, 8471–8477 (2008)CrossRefGoogle Scholar
  9. 9.
    Stratiev, D.S., Shishkova, I., Tzingov, T., Zeuthen, P.: Industrial investigation on the origin of sulfur in fluid catalytic cracking gasoline. Ind. Eng. Chem. Res. 48, 10253–10261 (2009)CrossRefGoogle Scholar
  10. 10.
    Sapei, E., Pokki, J.P., Uusi-Kyyny, P., Keskinen, K.I., Alopaeus, V.: Isobaric vapor − liquid equilibrium for binary systems containing benzothiophene. Fluid Phase Equilib. 307, 180–184 (2011)CrossRefGoogle Scholar
  11. 11.
    Little, D.M.: Catalytic Reforming. Penn Well Publishing Company, Houston (1985)Google Scholar
  12. 12.
    Topsøe, H., Clausen, B.S., Massoth, F.E.: Hydrotreating Catalysis Science and Technology. Springer, New York (1996)Google Scholar
  13. 13.
    Hallie, H.: Experience reveals best presulfiding techniques for HDS catalysts. Hydrodesulfurization catalysts. Oil Gas J. 20, 69–74 (1982)Google Scholar
  14. 14.
    Koseoglu, O.R., Bourane, A.: Integrated Hydrotreating and Oxidative Desulfurization Process. Saudi Arabian Oil Company, Dhahran (2014)Google Scholar
  15. 15. (2013). Accessed 3 Jan 2019
  16. 16.
    Koseoglu, O.R.: Integrated hydrotreating and isomerization process with aromatic separation, United States Patent Application (2013)Google Scholar
  17. 17.
    Redlich, O., Kister, A.T.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948)CrossRefGoogle Scholar
  18. 18.
    Wilson, G.M.: Vapor–liquid equilibrium. XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 86, 127–130 (1964)CrossRefGoogle Scholar
  19. 19.
    Zudkevitch, D., Forman, A.L., Deatherage, W.G.: Vapor–liquid equilibrium in binary mixtures of ortho-dichlorobenzene + N-methyl-2-pyrrolidone and methanol + dimethyl disulfide. AIChESymp. Ser. 86, 47–61 (1990)Google Scholar
  20. 20.
    Uusi-Kyyny, P., Sapei, E., Pokki, J.P., Pakkanen, M., Alopaeus, V.: Vapor–liquid equilibrium for dimethyl disulfide + butane, + trans-but-2-ene, + 2-methylpropane, + 2-methylpropene, + ethanol, and 2-ethoxy-2-methylpropane. J. Chem. Eng. Data 56, 2501–2510 (2011)CrossRefGoogle Scholar
  21. 21.
    Ben Mahdoui, N., Artigas, H., Lafuente, C., Hichri, M., Khattech, I.: Isobaric vapor–liquid equilibrium for the binary systems dimethyl disulfide + C1–C4 n-alkanol at 40.000 and 101.325 kPa. J. Chem. Eng. Data 62, 2037–2043 (2017)CrossRefGoogle Scholar
  22. 22.
    Anton, V., Lopez, M.C., Giner, B., Lafuente, C.: Phase equilibrium of binary mixtures of n-hexane + branched chlorobutanes: experimental results and group contribution predictions. J. Chem. Eng. Data 59, 3017–3024 (2014)CrossRefGoogle Scholar
  23. 23.
    Haines, W.E., Helm, R.V., Bailey, C.W., Ball, J.S.: Purification and properties of ten organic sulfur compounds. J. Phys. Chem. 58, 270–278 (1954)CrossRefGoogle Scholar
  24. 24.
    Von Niederhausern, D.M., Wilson, G.M., Giles, N.F.: Critical point and vapor pressure measurements for 17 compounds by a low residence time flow method. J. Chem. Eng. Data 51, 1990–1995 (2006)CrossRefGoogle Scholar
  25. 25.
    Scott, D.W., Finke, H.L., Gross, M.E., Guthrie, G.B., Huffman, H.M.: 2,3-Dithiabutane: low temperature heat capacity, heat of fusion, heat of vaporization, vapor pressure, entropy and thermodynamic functions. J. Am. Chem. Soc. 72, 2424–2430 (1950)CrossRefGoogle Scholar
  26. 26.
    Lemmon, E.W., Huber, M.L., McLinden, M.O.: NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg (2010)Google Scholar
  27. 27.
    Iglesias-Silva, G.A., Guzmán-López, A., Pérez-Durán, G., Ramos-Estrada, M.: Densities and viscosities for binary mixtures of n-undecane + 1-propanol, + 1-butanol, + 1-pentanol, and + 1-hexanol from 283.15 to 363.15 K at 0.1 MPa. J. Chem. Eng. Data 31, 2682–2699 (2016)CrossRefGoogle Scholar
  28. 28.
    Safarov, J., Verevkin, S.P., Bich, E., Heintz, A.: Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with 1-methyl-3-butylimidazolium octyl sulfate and 1-methyl-3-octylimidazolium tetrafluoroborate. J. Chem. Eng. Data 51, 518–525 (2006)CrossRefGoogle Scholar
  29. 29.
    Wysoczanska, K., Calvar, N., Macedo, E.A.: (Vapour + liquid) equilibria of alcohol + 1-methyl-1-propylpiperidinium triflate ionic liquid: VPO measurements and modelling. J. Chem. Thermodyn. 97, 183–190 (2016)CrossRefGoogle Scholar
  30. 30.
    Grygorian, Z.L., Kazoyan, E.A., Markaryan, Sh.A.: Thermodynamics of liquid–vapour phase equilibrium in dimethyl sulfoxide – alkanol systems in the range of 293.15 – 323.15 K. Russ. J. Phys. Chem. 89, 1790–1794 (2015)CrossRefGoogle Scholar
  31. 31.
    Privat, R., Jaubert, J.-N.: Discussion around the paradigm of ideal mixtures with emphasison the definition of the property changes on mixing. Chem. Eng. Sci. 83, 319–333 (2012)CrossRefGoogle Scholar
  32. 32.
    Silverman, N., Tassios, D.: Prediction of multicomponent vapor–liquid equilibrium with the Wilson equation: effect of the minimization function and of the quality of binary data. Ind. Eng. Chem. Proc. Des. Dev. 23, 586–589 (1984)CrossRefGoogle Scholar
  33. 33.
    Smith, J.M., Van Ness, H.C., Abbott, M.M.: Introduction to Chemical Engineering Thermodynamics, 5th edn. McGraw–Hill Education, New York (1996)Google Scholar
  34. 34.
    Villa, S., Garriga, R., Pérez, P., Gracia, M., González, J.A., de la Fuente, I.G., Cobos, J.C.: Thermodynamics of mixtures with strongly negative deviations from Raoult’s law: part 9. Vapour–liquid equilibria for the system 1-propanol + di-n-propylamine at six temperatures between 293.15 and 318.15 K. Fluid Phase Equilib. 231, 211–220 (2005)CrossRefGoogle Scholar
  35. 35.
    Tsonopoulos, C.: Empirical correlation of second virial coefficients. AIChE J. 20, 263–273 (1974)CrossRefGoogle Scholar
  36. 36.
    Tsonopoulos, C., Heidman, J.L.: From the virial to the cubic equation of state. Fluid Phase Equilib. 57, 261–270 (1990)CrossRefGoogle Scholar
  37. 37.
    Tsonopoulos, C., Dymond, J.H.: Second virial coefficients of normal alkanes, linear 1-alkanols (and water), alkyl ethers, and their mixtures. Fluid Phase Equilib. 133, 11–34 (1997)CrossRefGoogle Scholar
  38. 38.
    Van Ness, H.C., Byer, S.M., Gibbs, R.E.: Vapor–liquid equilibrium: I. An appraisal of data reduction methods. AIChE J. 19, 238–244 (1973)CrossRefGoogle Scholar
  39. 39.
    Fredenslund, A., Gmehling, J., Rasmussen, P.: Vapor–Liquid Equilibria Using UNIFAC. Elsevier, Amsterdam (1977)Google Scholar
  40. 40.
    Almasi, M.: Thermodynamic properties of binary mixtures containing N, N-dimethyl acetamide + 2-alkanol: experimental data and modeling. J. Chem. Eng. Data 59, 275–281 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire des Matériaux, Cristallochimie et Thermodynamique Appliquée, Département de Chimie, Faculté des SciencesUniversité de Tunis EL ManarTunisTunisia
  2. 2.Departamento de Química Física, Facultad de CienciasUniversidad de ZaragozaZaragozaSpain

Personalised recommendations