Advertisement

The Solubility Parameter of Carbon Dioxide and Its Solubility in Ionic Liquids

  • Yizhak Marcus
Article
  • 57 Downloads

Abstract

Carbon dioxide as a solute interacts with solvents mainly via dispersion forces. Its Hildebrand solubility parameter, δH, may therefore be used to predict its dissolution. The usual definition of δH, involving ΔvH, the molar enthalpy of vaporization, is inapplicable for carbon dioxide, it being a gas at the temperatures of technical interest (298 ≤ T/K ≤ 333). The ability of CO2 to accept hydrogen bonds from donor solvents and its appreciable polarizability justify the determination of its Hansen solubility parameters. The definite equation of state of CO2 reported by Span and Wagner permits the determination of the required parameters. The solubility of gaseous carbon dioxide in ionic liquids (room temperature ionic liquids and deep eutectic solvents) has been extensively studied and is discussed in the light of the above statements.

Keywords

Carbon dioxide Solubility parameter Room temperature ionic liquids Deep eutectic solvents 

Abbreviations

1-Me-3-Me-imidazolium

1-Methyl-3-methylimidazolium

1-Et-3-Me-imidazolium

1-Ethyl-3-methylimidazolium

1-HOEt-3-Me-imidazolium

1-(2-Hydrohyethyl)-3-methylimidazolium

1-Pr-3-Me-imidazolium

1-Propyl-3-methylimidazolium

1-Allyl-3-Me-imidazolium

1-Allyl-3-methylimidazolium

1-Bu-3-Me-imidazolium

1-Butyl-3-methylimidazolium

1-Hx-3-Me-imidazolium

1-Hexyl-3-methylimidazolium

1-Oc-3-Me-imidazolium

1-Octyl-3-methylimidazolium

1-C8H4F13-3-Me-imidazolium

1-Tridecafluorooctyl-3-methylimidazolium

1-Dc-3-Me-imidazolium

1-Decyl-3-methylimidazolium

Et3 sulfonium

Triethylsulfonium

Me3Bu ammonium

Butyltrimethylammonium

Me3Hx ammonium

Hexyltrimethylammonium

Me3Dc ammonium

Fecyltrimethylammonoium

Me2PrBu ammonium

Butyl dimethylpropylammonium

Me2PrHx ammonium

Hexyldimethylpropylammonium

Me2PrDc ammonium

Decyldimethypropylammonium

Et3Hx ammonium

Hexyltriethylammonium2

Bu3Me ammonium

Methyltributylammonium

Oc3Me ammonium

Methyltrioctylammonium

Et2Me(MeOEt)ammonium

Methydiethyl(2-methoxyethyl)ammonium

Bu-pyridinium

1-Butylpyridinium

Bu(4Me)pyridinium

1-Butyl-4-methylpyridinium

Hx(Me)pyridinium

1-Hexyl-4-methylpyridinium

1-Bu-1-Mepyrrollidinium

1-Butyl-1-methylpyrrolidinium

EtBu3 phosphonium

Ethyltriputylphosphonium

TdBu3 phosphononium

Tetradecyltributylphosphonium

TdHx3 phosphononium

Tetradecyltrihexylphosphonium

DoPhSO3

4-Dodecylbenzenesulfonate

Et2HPO4

Diethyl hydrogenphosphate

MeSO3

Methylsulfonate

NTF2

Bis(trifluoromethylsulfonyl)amide

References

  1. 1.
    Metz, B., Davidson, O., De Coninck, H., Loos, M., Meyer, L. (eds.): IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, Cambridge (2005)Google Scholar
  2. 2.
    Sarmad, S., Mikkola, J.-P., Ji, X.: Carbon dioxide capture with ionic liquids and deep eutectic solvents: a new generation of sorbents. Chemsuschem 10, 324–352 (2017)CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Marcus, Y.: Gas solubility in deep eutectic solvents. Monatsh. Chem. 149, 211–217 (2018)CrossRefGoogle Scholar
  4. 4.
    Hansen, C.H.: Hansen Solubility Parameters, 2nd edn. CRC/Taylor and Francis, Boca Raton (2007)CrossRefGoogle Scholar
  5. 5.
    Marcus, Y.: The solubility parameter of carbon dioxide—an enigma. ACS Omega 3, 524–528 (2018)CrossRefGoogle Scholar
  6. 6.
    Span, R., Wagner, W.: A new equation of state for carbon dioxide covering the fluid region from the triple point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25, 1509–1596 (1996)CrossRefGoogle Scholar
  7. 7.
    Marcus, Y.: Solubility parameters of permanent gases. J. Chem. (2016).  https://doi.org/10.1155/2016/4701919 CrossRefGoogle Scholar
  8. 8.
    Williams, L.L.: Solubility parameters of carbon dioxide, chap. 10. In: Hansen, C.M. (ed.) Hansen Solubility Parameters. A User’s Handbook, 2nd edn. Taylor and Francis, Hoboken (2007)Google Scholar
  9. 9.
    Marcus, Y.: Are solubility parameters relevant for the solubility of liquid organic solutes in room temperature ionic liquids? J. Mol. Liq. 214, 31–36 (2016)CrossRefGoogle Scholar
  10. 10.
    Marcus, Y.: Room temperature ionic liquids: their cohesive energies, solubility parameters and solubilities in them. J. Solution Chem. 46, 1778–1791 (2017)CrossRefGoogle Scholar
  11. 11.
    Torralba-Calleja, E., Skinner, J., Gutierrez-Tauste, D.: CO2 capture in ionic liquids: a review of solubilities and experimental methods. J. Chem. 2013, 473584/1–16 (2013)CrossRefGoogle Scholar
  12. 12.
    Zaitsau, D.H., Yermatayeu, A.V., Emel’yanenko, V.N., Schukz, A., Verevkin, S.P.: Thermochemistry of pyridinium based ionic liquids with tetrafluoroborate anion. Z. Anorg. Allgem. Chem. 643, 87–92 (2017)CrossRefGoogle Scholar
  13. 13.
    Schröder, B., Coutinho, J.A.P.: predicting enthalpies of vaporization of aprotic ionic liquids with COSMO-RS. Fluid Phase Equilib. 370, 24–33 (2014)CrossRefGoogle Scholar
  14. 14.
    Sistla, Y.S., Jain, L., Khanna, A.: Validation and prediction of solubility parameters of ionic liquids for CO2 capture. Sep. Purif. Technol. 97, 51–64 (2012)CrossRefGoogle Scholar
  15. 15.
    Finotello, A., Bara, J.E., Camper, D., Noble, R.D.: Room-temperature ionic liquids: temperature dependence of gas solubility. J. Chem. Eng. Data 47, 3453–3459 (2008)Google Scholar
  16. 16.
    Caena, C., Anthony, J.L., Shan, J.K., Morrow, T.I., Brennecke, J.F., Maginn, E.J.: Why is CO2 so soluble in imidazolium-based ionic liquids. J. Am. Chem. Soc. 128, 5300–5308 (2004)Google Scholar
  17. 17.
    Kilaru, P.K., Scovazzo, P.: Correlations of low pressure carbon dioxide and hydrocarbon solubilities in imidazolium-, phosphonium-, and ammonium-based room temperature ionic liquids. Part 2. Using activation energy of viscosity. Ind. Eng. Chem. 47, 910–919 (2008)CrossRefGoogle Scholar
  18. 18.
    Shin, E.-K., Lee, B.-C.: High pressure phase behavior of carbon dioxide with ionic liquids: 1-alkyl-3-methylimidazolium trifluoromethanesulfonate. J. Chem. Eng. Data 53, 2728–2734 (2008)CrossRefGoogle Scholar
  19. 19.
    Camper, D., Becker, C., Koval, C., Noble, R.: Low pressure hydrocarbon solubility in room temperature ionic liquids containing imidazolium rings interpreted using regular solution theory. Ind. Eng. Chem. Res. 44, 1928–1933 (2005)CrossRefGoogle Scholar
  20. 20.
    Soriano, A.N., Doma Jr., B.T., Li, M.-H.: Carbon dioxide solubility in some ionic liquids at moderate pressures. J. Taiwan Inst. Chem. Eng. 40, 387–393 (2009)CrossRefGoogle Scholar
  21. 21.
    Jalili, A.H., Mehdizadeh, A., Shokouhi, M., Ahmadi, A.N., Hosseini-Jenab, M., Fateminassab, F.: Solubility and diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. J. Chem. Thermodyn. 42, 1298–1303 (2010)CrossRefGoogle Scholar
  22. 22.
    Jalili, A.H., Shokouhi, M., Maurer, G., Hosseini-Jenab, M.: Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluoro-phosphate. J. Chem. Thermodyn. 67, 55–62 (2013)CrossRefGoogle Scholar
  23. 23.
    Shokouhi, M., Adibi, M., Jalili, A.H., Hosseini-Jenab, M., Mehdizadeh, A.: Solubility and diffusion of CO2 and H2S in the ionic liquid 1-(2-hydroxoethyl)-3-methylimidazo-lium tetrafluoroborate. J. Chem. Eng. Data 55, 1663–1668 (2010)CrossRefGoogle Scholar
  24. 24.
    Jalili, A.H., Mehdizadeh, A., Shokouhi, M., Sachaeinia, M., Taghikhani, V.: Solubility of CO2 in 1-(2-hydroxoethyl)-3-methylimidazolium ionic liquids with different anions. J. Chem. Thermodyn. 42, 787–791 (2010)CrossRefGoogle Scholar
  25. 25.
    Nonthanasin, T., Henni, A., Saiwan, C.: Densities and low pressure solubilities of carbon dioxide in five promising ionic liquids. RSC Adv. 4, 7566–7578 (2014)CrossRefGoogle Scholar
  26. 26.
    Zhang, J., Zhang, Q., Qiao, B., Deng, Y.: Solubilities of the gaseous and liquid solutes and their thermodynamics of solubilization in the novel room-temperature ionic liquids at infinite dilution by gas chromatography. J. Chem. Eng. Data 52, 2277–2283 (2007)CrossRefGoogle Scholar
  27. 27.
    Anderson, J.L., Dixon, J.K., Brennecke, J.F.: Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-hextyl-3-methylpyridinium bus(trifluoromethylsulfonyl)imide: comparison with other ionic liquids. Acc. Chem. Res. 40, 1206–1216 (2007)CrossRefGoogle Scholar
  28. 28.
    Jacquemin, J., Costa Gomes, M.F., Husson, P., Majer, V.: Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monioxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K And 343 k and at pressures close to atmospheric. J. Chem. Thermodyn. 38, 190–502 (2006)CrossRefGoogle Scholar
  29. 29.
    Anthony, J.L., Maginn, E.J., Brennecke, J.F.: Solubilities and thermodynamic properties of gases in the ionic liquid 1-N-butyl-3-methylimidazolium hexafluorophosphate. J. Phys. Chem. B 106, 7315–7320 (2002)CrossRefGoogle Scholar
  30. 30.
    Jacquemin, J., Husson, P., Majer, V., Costa Gomes, M.F.: Low pressure solubility and thermodynamics of solvation of eight gases in 1-butyl-3-methylimidazolium hexafluorophosphate. Fluid Phase Equilib. 240, 87–95 (2006)CrossRefGoogle Scholar
  31. 31.
    Blanchard, L.A., Gu, Z., Brennecke, J.F.: High pressure phase behavior of ionic liquid/CO2 systems. J. Phys. Chem. B 105, 2437–2444 (2001)CrossRefGoogle Scholar
  32. 32.
    Muldoon, M.J., Aki, S.N.V.K., Anderson, J.L., Dixon, J.K., Brennecke, J.F.: Improving carbon dioxide solubility in ionic liquids. J. Phys. Chem. B 111, 9001–9009 (2007)CrossRefPubMedCentralGoogle Scholar
  33. 33.
    Zhang, X., Liu, Z., Wang, W.: Screening of ionic liquids to capture CO2 by COSMO-RS experiments. AIChE J. 54, 2717–2729 (2008)CrossRefGoogle Scholar
  34. 34.
    Almantariotis, D., Gefflaut, T., Padua, A.A.H., Coxam, J.-Y., Costa Gomes, M.F.: Effect of fluorination and size of the alkyl side-chain on the solubility of carbon dioxide in 1-alky;-3-methylimidazolium bis(trifluoromethylsulfobyl)amide ionic liquids. J. Phys. Chem. B 114, 3608–3617 (2010)CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Jalili, A.H., Safavi, M., Ghotbi, C., Mehdizadeh, A., Hosseini-Jenab, M., Taghikhani, V.: Solubility and diffusion of CO2 and H2S and their mixtures in the ionic liquid 1-octyl-3-methylimidazolium bis(trifluoromethyl)sulfoylimide. J. Phys. Chem. B 116, 2758–2774 (2012)CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Condemarin, R., Scovazzo, P.: Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium RTIL data. Chem. Eng. J. 147, 51–57 (2009)CrossRefGoogle Scholar
  37. 37.
    Stevanovic, S., Costa Gomes, M.F.: Solubility of carbon dioxide, nitrous oxide, etyhane and nitrogen in 1-butyl-1-methylpyrrolidinium and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate (Efap) ionic liquids. J. Chem. Thermodyn. 59, 65–71 (2013)CrossRefGoogle Scholar
  38. 38.
    Carvalho, P.J., Alvarez, V.H., Marrucho, I.M., Aznar, M., Coutinho, J.A.P.: High carbon dioxide solubilities in trihexyltetradecylphosphonium-based ionic liquids. J. Supercrit. Fluids 52, 258–265 (2010)CrossRefGoogle Scholar
  39. 39.
    Zhang, S., Chen, Y., Ren, R.X.-F., Zhang, Y., Zhang, J., Zhang, X.: Solubility of CO2 in sulfonate ionic liquids at high pressure. J. Chem. Eng. Data 50, 230–233 (2005)CrossRefGoogle Scholar
  40. 40.
    Barton, A.F.M.: CRC Handbook of Solubility Parameters and Other Cohesion Parameters. CRC Press, Boca Raton (1983)Google Scholar
  41. 41.
    Yim, J.-H., Ha, S.-J., Lim, J.S.: Measurement and Correlation of CO2 solubility in 1-ethyl-3-methylimidazolium ([EMIM]) cation-based ionic liquids: [EMIM][Ac], [EMIM][Cl], and [EMIM][MeSO4]. J. Chem. Eng. Data 63, 508–518 (2018)CrossRefGoogle Scholar
  42. 42.
    Yim, J.-H., Ha, S.-J., Lim, J.S.: Measurement and correlation of CO2 solubility in 1-butyl-3-methylimidazolium ([BMIM]) cation-based ionic liquids: [BMIM][Ac], [BMIM][Cl], [BMIM][MeSO4]. J. Supercrit. Fluids 138, 73–91 (2018)CrossRefGoogle Scholar
  43. 43.
    Vetere, A.: An empirical method to evaluate the solubility of several gases in polar and non-polar solvents. Fluid Phase Equilib. 132, 77–91 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of ChemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations