The Intriguing Properties of 1-Ethyl-3-methylimidazolium bis(fluorosulfonyl)imide Ionic Liquid

  • S. Sayah
  • F. Ghamouss
  • J. Santos-Peña
  • F. Tran-Van
  • D. LemordantEmail author


Among all ionic liquids (ILs) which can be used as electrolyte solvents in Li-ion batteries (LIB), 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide, [C2mim][FSI], is certainly the most noteworthy. One reason for that is driven by its exceptionally low viscosity, which enhances its intrinsic conductivity and makes it a good solvent for the formulation of safer electrolytes in LIB in comparison with classical organic solvents. The solubility of lithium salts in [C2mim][FSI] can be very high (more than 4 mol·L−1 for LiFSI), which opens the field to the use highly concentrated electrolyte solutions containing only ions. With the aim of comparing the physico-chemical properties of different FSI based ILs and the electrolytes obtained by addition of a doping Li-salt, three [FSI] based ILs were selected: [C2mim][FSI], N-propyl-N-methyl pyrrolidinium bis(fluorosulfonyl)imide [C3mpyrr][FSI] and N-butyl-N-methyl pyrrolidinium bis(fluorosulfonyl)imide [C4mpyrr][FSI]. For comparison, a TFSI based IL ([C4mpyrr][TFSI]) and a reference alkylcarbonate mixture (ethylcarbonate (EC)/propylcarbonate (PC)/dimethylcarbonate (DMC) (in the proportion 1/1/3 by weight) are also studied. LiFSI or lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) were used as doping lithium salts. The following physico-chemical properties have been investigated: density, viscosity, ionic conductivity, ionicity and transference number. From these results, it can be concluded that all [FSI] based ILs considered in this work exhibit both a relatively low viscosity, a high conductivity, a high ionicity and Li-ion transference number. All these properties make them good candidates for use as electrolyte in Li-ion batteries. Moreover their great thermal stability and low flammability give them an advantage over classical organic solvents.


Ionic liquid 1-Ethyl-3-methylimidazolium bis(fluorosulfonyl)imide Electrolyte Viscosity Ionic conductivity Transference number 



Support for this study was provided by the French research national agency (ANR) under the program PROGELEC (2013) and the project “Development of NEW Si-based Nanocomposite Materials with Stabilized Surface for Negative Electrodes of Li-ion batteries (Newmaste). We wish also to thank Dr. Catherine Santini (CPE, Lyon) for helpful discussions.


  1. 1.
    Barrer, R.M.: The viscosity of pure liquids. II. Polymerised ionic melts. Trans. Faraday Soc. 39, 59–67 (1943)CrossRefGoogle Scholar
  2. 2.
    Macfarlane, D.R., Forsyth, M., Howlett, P.C., Pringle, J.M., Sun, J., Annat, G., Neil, W., Izgorodina, E.I.: Ionic liquids in electrochemical devices and processes: managing interfacial electrochemistry. Acc. Chem. Res. 40, 1165–1173 (2007)CrossRefGoogle Scholar
  3. 3.
    Appetecchi, G.B., Montanino, M., Balducci, A., Lux, S.F., Winterb, M., Passerini, S.: Lithium insertion in graphite from ternary ionic liquid-lithium salt electrolytes. I. Electrochemical characterization of the electrolytes. J. Power Sources 192, 599–605 (2009)CrossRefGoogle Scholar
  4. 4.
    Lewandowski, A., Świderska-Mocek, A.: Ionic liquids as electrolytes for Li-ion batteries-an overview of electrochemical studies. J. Power Sources 194, 601–609 (2009)CrossRefGoogle Scholar
  5. 5.
    Fang, S., Zhang, Z., Jin, Y., Yang, L., Hirano, S.I., Tachibana, K., Katayama, S.: New functionalized ionic liquids based on pyrrolidinium and piperidinium cations with two ether groups as electrolytes for lithium battery. J. Power Sources 196, 5637–5644 (2011)CrossRefGoogle Scholar
  6. 6.
    Lee, J.S., Bae, J.Y., Lee, H., Quan, N.D., Kim, H.S., Kim, H.: Ionic liquids as electrolytes for Li ion batteries. J. Ind. Eng. Chem. 10, 1086–1089 (2004)Google Scholar
  7. 7.
    Van Valkenburg, M.E., Vaughn, R.L., Williams, M., Wilkes, J.S.: Thermochemistry of ionic liquid heat-transfer fluids. Thermochim. Acta 425, 181–188 (2005)CrossRefGoogle Scholar
  8. 8.
    Welton, T.: Ionic liquids in catalysis. Coord. Chem. Rev. 248, 2459–2477 (2004)CrossRefGoogle Scholar
  9. 9.
    Garcia, B., Lavallée, S., Perron, G., Michot, C., Armand, M.: Room temperature molten salts as lithium battery electrolyte. Electrochim. Acta 49, 4583–4588 (2004)CrossRefGoogle Scholar
  10. 10.
    Borgel, V., Markevich, E., Aurbach, D., Semrau, G., Schmidt, M.: On the application of ionic liquids for rechargeable Li batteries: high voltage systems. J. Power Sources 189, 331–336 (2009)CrossRefGoogle Scholar
  11. 11.
    Umebayashi, Y., Mitsugi, T., Fukuda, S., Fujimori, T., Fujii, K., Kanzaki, R., Takeuchi, M., Ishiguro, S.-I.: Lithium ion solvation in room-temperature ionic liquids involving bis(trifluoromethane-sulfonyl) imide anion studied by raman spectroscopy and DFT calculations. J. Phys. Chem. B. 111, 13028–13032 (2007)CrossRefGoogle Scholar
  12. 12.
    Saito, Y., Umecky, T., Niwa, J., Sakai, T., Maeda, S.: Existing condition and migration property of ions in lithium electrolytes with ionic liquid solvent. J. Phys. Chem. B 111, 11794–11802 (2007)CrossRefGoogle Scholar
  13. 13.
    Lee, S.Y., Yong, H.H., Lee, Y.J., Kim, S.K., Ahn, S.: Two-cation competition in ionic-liquid-modified electrolytes for lithium ion batteries. J. Phys. Chem. B 109, 13663–13667 (2005)CrossRefGoogle Scholar
  14. 14.
    Seki, S., Mita, Y., Tokuda, H., Ohno, Y.: Effects of alkyl chain in imidazolium-type room-temperature ionic liquids as lithium secondary battery electrolytes. Electrochem. Solid-State Lett. 10, A237–A240 (2007)CrossRefGoogle Scholar
  15. 15.
    Seki, S., Ohno, Y., Kobayashi, Y., Miyashiro, H., Usami, A., Mita, Y., Tokuda, H., Watanabe, M., Hayamizu, K., Tsuzuki, S., Hattori, M., Terada, N.: Imidazolium-based room-temperature ionic liquid for lithium secondary batteries. J. Electrochem. Soc. 154, A173–A177 (2007)CrossRefGoogle Scholar
  16. 16.
    Seki, S., Ohno, Y., Mita, Y., Serizawa, N., Takei, K., Miyashiro, H.: Imidazolium-based room-temperature ionic liquid for lithium secondary batteries: relationships between lithium salt concentration and battery performance characteristics. ECS Electrochem. Lett. 1, A77–A79 (2012)CrossRefGoogle Scholar
  17. 17.
    Srour, H., Rouault, H., Santini, C.: Imidazolium based ionic liquid electrolytes for Li-ion secondary batteries based on graphite and LiFePO4. J. Electrochem. Soc. 160, A66–A69 (2013)CrossRefGoogle Scholar
  18. 18.
    Best, A.S., Bhatt, A.I., Hollenkamp, A.F.: Ionic liquids with the bis(fluorosulfonyl)imide anion: electrochemical properties and applications in battery technology. J. Electrochem. Soc. 157, A903 (2010)CrossRefGoogle Scholar
  19. 19.
    Seki, S., Kobayashi, Y., Miyashiro, H., Ohno, Y., Mita, Y., Terada, N., Charest, P., Guerfi, A., Zaghib, K.: Compatibility of N-methyl-N-propylpyrrolidinium cation room-temperature ionic liquid electrolytes and graphite electrodes. J. Phys. Chem. C 112, 16708–16713 (2008)CrossRefGoogle Scholar
  20. 20.
    Galiński, M., Lewandowski, A., Stępniak, I.: Ionic liquids as electrolytes. Electrochim. Acta 51, 5567–5580 (2006)CrossRefGoogle Scholar
  21. 21.
    Lewandowski, A., Świderska-Mocek, A.: Ionic liquids as electrolytes for Li-ion batteries-an overview of electrochemical studies. J. Power Sources 194, 601–609 (2009)CrossRefGoogle Scholar
  22. 22.
    Etacherie, V., Marom, R., Elazari, R., Gregory, S., Aurbach, D.: Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011)CrossRefGoogle Scholar
  23. 23.
    Eftekhari, A., Liu, Y., Chen, P.: Different roles of ionic liquids in lithium batteries. J. Power Sources 334, 221–239 (2016)CrossRefGoogle Scholar
  24. 24.
    Armand, M., Endres, F., MacFarlane, D.R., Ohno, H., Scrosati, B.: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009)CrossRefGoogle Scholar
  25. 25.
    Klamt, A., Schüürmann, G.: COSMO a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2(2), 799–805 (1993)CrossRefGoogle Scholar
  26. 26.
    Ahlrichs, R., Bär, M., Häser, M., Horn, H., Kölmel, C.: Electronic structure calculations on workstation computers: the program system turbomole. Chem. Phys. Lett. 162, 165–169 (1989)CrossRefGoogle Scholar
  27. 27.
    Coadou, E., Goodrich, P., Neale, A.R., Timperman, L., Hardacre, C., Jacquemin, J., Anouti, M.: Synthesis and thermophysical properties of ether-functionalized sulfonium ionic liquids as potential electrolytes for electrochemical applications. ChemPhysChem 17, 3992–4002 (2016)CrossRefGoogle Scholar
  28. 28.
    Sayah, S., Ghamouss, F., Tran-Van, F., Santos-Peña, J., Lemordant, D.: A bis(fluorosulfonyl)imide based ionic liquid as safe and efficient electrolyte for Si/Sn–Ni/C/Al composite anode. Electrochim. Acta 243, 197–206 (2017)CrossRefGoogle Scholar
  29. 29.
    Kerner, M., Plylahan, N., Scheers, J., Johansson, P.: Ionic liquid based lithium battery electrolytes: fundamental benefits of utilising both TFSI and FSI anions? Phys. Chem. Chem. Phys. 17, 19569–19581 (2015)CrossRefGoogle Scholar
  30. 30.
    Johansson, P., Fast, L.E., Matic, A., Appetecchi, G.B., Passerini, S.: The conductivity of pyrrolidinium and sulfonylimide-based ionic liquids: a combined experimental and computational study. J. Power Sources 195, 2074–2076 (2010)CrossRefGoogle Scholar
  31. 31.
    Rocha, M., Ribeiro, F., Lobo Ferreira, A., Coutinho, J., Santos, L.: Thermophysical properties of [CN−1C1Im][PF6] ionic liquids. J. Mol. Liq. 188, 196–202 (2013)CrossRefGoogle Scholar
  32. 32.
    Navia, P., Troncoso, J., Romani, L.: Isobaric thermal expansivity for nonpolar compounds. J. Chem. Eng. Data 55, 2173–2179 (2010)CrossRefGoogle Scholar
  33. 33.
    Montanino, M., Moreno, M., Alessandrini, F., Appetecchi, G.B., Passerini, S., Zhou, Q., Henderson, W.A.: Physical and electrochemical properties of binary ionic liquid mixtures: (1 − x) PYR 14TFSI − (x) PYR 14IM 14. Electrochim. Acta 60, 163–169 (2012)CrossRefGoogle Scholar
  34. 34.
    Zhang, H., Feng, W., Nie, J., Zhou, Z.: Recent progresses on electrolytes of fluorosulfonimide anions for improving the performances of rechargeable Li and Li-ion battery. J. Fluor. Chem. 174, 49–61 (2015)CrossRefGoogle Scholar
  35. 35.
    Chaudoy, V.: Electrolytes Polymères Gélifiés pour Microbatteries au Lithium. PhD dissertation, Université François Rabelais de Tours (2016)Google Scholar
  36. 36.
    Berhaut, C.L.: Propriétés de Transport des Sels de Lithium LiTDI et LiFSI-Application à la Formulation d’Electrolytes Optimisés pour Batteries Li-ion. PhD dissertation, Université François Rabelais de Tours (2016)Google Scholar
  37. 37.
  38. 38.
    Trigueiro, J.P.C., Lavall, R.L., Silva, G.G.: Nanocomposites of graphene nanosheets/multiwalled carbon nanotubes as electrodes for in-plane supercapacitors. Electrochim. Acta 187, 312–322 (2016)CrossRefGoogle Scholar
  39. 39.
    Petroffe, G., Beouch, L., Cantin, S., Aubert, P.-H., Plesse, C., Dudon, J.-P., Vidal, F., Chevrot, C.: Investigations of ionic liquids on the infrared electroreflective properties of poly(3,4-ethylenedioxythiophene). Solar Energy Mat. Solar Cells 177, 23–31 (2017)CrossRefGoogle Scholar
  40. 40.
    Angell, C.A.: Fast ion motion in glassy and amorphous materials. Solid State Ionics 9–10, 3–16 (1983)CrossRefGoogle Scholar
  41. 41.
    Walden, P.Z.: Überorganischelösungs und ionisierungsmittel. III. Teil: innerereibung und derenzusammen-hangmitdemleitvermögen. Phys. Chem. 55, 207–246 (1906)Google Scholar
  42. 42.
    Grotthuss, C.J.T.: Sur la décomposition de l’eau et des corps qu’elle tient en dissolution à l’aide de l’électricité galvanique. Ann. Chim. 58, 54–73 (1806)Google Scholar
  43. 43.
    Thorsmølle, V.K., Rothenberger, G., Topgaard, D., Brauer, J.C., Kuang, D.-B., Zakeeruddin, S.M., Lindman, B., Grätzel, M., Moser, J.-E.: Extraordinarily efficient conduction in a redox-active ionic liquid. ChemPhysChem 12, 145–149 (2011)CrossRefGoogle Scholar
  44. 44.
    Yoshizawa, M., Xu, W., Angell, C.A.: Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of ∆pK a from aqueous solutions. J. Am. Chem. Soc. 125, 15411–15419 (2003)CrossRefGoogle Scholar
  45. 45.
    Yoon, H., Best, A.S., Forsyth, M., MacFarlane, D.R., Howlett, P.C.: Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes. Phys. Chem. Chem. Phys. 17, 4656–4663 (2015)CrossRefGoogle Scholar
  46. 46.
    Fujii, K., Hamano, H., Doi, H., Song, X., Tsuzuki, S., Hayamizu, K., Seki, S., Kameda, Y., Dokko, K., Watanabe, M., Umebayashi, Y.: Unusual Li+ ion solvation structure in bis(fluorosulfonyl)amide based ionic liquid. J. Phys. Chem. C 117, 19314–19324 (2013)CrossRefGoogle Scholar
  47. 47.
    Sharovaa, V., Morettia, A., Diemant, T., Varzia, A., Behma, R.J., Passerini, S.: Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries. J. Power Sources 375, 43–52 (2018)CrossRefGoogle Scholar
  48. 48.
    Kang, S.-J., Park, K., Park, S.-H., Lee, H.: Unraveling the role of LiFSI electrolyte in the superior performance of graphite anodes for Li-ion batteries. Electrochim. Acta 259, 949–954 (2018)CrossRefGoogle Scholar
  49. 49.
    Appetecchi, G. B., Montanino, M., Passerini, S.: Ionic liquid-based electrolytes for high energy, safer lithium batteries. In: Visser, A.E., Bridges N.J., Rogers, R.D. (eds.) Ionic Liquids. Science and Applications. ACS Symposium Series 1117, Chap. 4, 67–128 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université de ToursToursFrance

Personalised recommendations