pH-Dependent Antibiotic Gatifloxacin Interacting with Cationic Surfactant: Insights from Spectroscopic and Chromatographic Measurements

  • Muhammad Faizan Nazar
  • Waqar Azeem
  • Alina Kayani
  • Muhammad Zubair
  • Peter John
  • Asif Mahmood
  • Muhammad Ashfaq
  • Muhammad Nadeem Zafar
  • Sajjad Hussain Sumrra
  • Muhammad Naveed Zafar


Microheterogeneous surfactant assemblies solubilize and encapsulate active drug molecules and consequently protect them from the adverse environmental conditions. As pseudo-models of biological membranes the associated structures of surfactant molecule are also very handy for investigators to discern their roles in cellular interactions. The present study reveals the molecular interaction of a potential antibiotic, Gatifloxacin (GTF), with cetyltrimethylammonium bromide (CTAB, a quaternary ammonium surfactant) at physiological pH. Chromatographic and spectral–luminescent measurements were performed to probe the GTF–CTAB association and drug–surfactant interaction modes which were quantified by estimating the binding capacities (Kb) and related Gibbs energies at various pH values. The binding values of GTF–CTAB obtained from micellar liquid chromatography measurements are found to be in good agreement with those measured by electronic spectroscopy. Moreover, the data obtained from molecular electrostatic potentials revealed that the slightly basic medium (pH = 7.4) induces hydrophilic character in GTF molecules that may dynamically assist the incorporation of drug molecules into the outer core in the palisade layer of CTAB micelles, which favors penetration binding. In addition to electrostatic intermolecular forces, the hydrophobic aggregates of surfactant molecules are also found to aid solubilization of GTF in the aggregate’s corona, which may result in controlled release of the drug.


Microheterogeneous Pseudo-models Quaternary ammonium surfactant Molecular electrostatic potential Palisade layer 



The authors thank the Faculty of Chemistry, Gujrat University, Pakistan for providing laboratory facilities. The author also sincerely thanks the Pakistan Higher Education Commission for providing financial support through the NRPU 4557 Project.

Supplementary material

10953_2018_811_MOESM1_ESM.docx (42 kb)
Supplementary material 1 (DOCX 42 kb)


  1. 1.
    Demetzos, C.: Biophysics and thermodynamics: the scientific building blocks of bio-inspired drug delivery nano systems. AAPS PharmSciTech 16, 491–495 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Tourné-Péteilha, C., Coasneabc, B., Inde, M., Breveta, D., Devoissellea, J.M., Viouxa, A., Viau, L.: Surfactant behavior of ionic liquids involving a drug: from molecular interactions to self-assembly. Langmuir 30, 1229–1238 (2014)CrossRefGoogle Scholar
  3. 3.
    Chen, Y., Liu, L.: Modern methods for delivery of drugs across the blood–brain barrier. Adv. Drug Deliv. Rev. 64, 640–665 (2012)CrossRefPubMedGoogle Scholar
  4. 4.
    Wang, J., Wang, Y., Liang, W.: Delivery of drugs to cell membranes by encapsulation in PEG–PE micelles. J. Control. Release 160, 637–651 (2012)CrossRefPubMedGoogle Scholar
  5. 5.
    Nazar, M.F., Mukhtar, F., Ashfaq, M., Rahman, H.M.A., Zafar, M.N., Sumrra, S.H.: Physicochemical investigation of antibacterial moxifloxacin interacting with quaternary ammonium disinfectants. Fluid Phase Equilib. 406, 47–54 (2015)CrossRefGoogle Scholar
  6. 6.
    Nazar, M.F., Mukhtar, F., Chaudry, S., Ashfaq, M., Mehmood, S., Asif, A., Rana, U.A.: Biophysical probing of antibacterial gemifloxacin assimilated in surfactant mediated molecular assemblies. J. Mol. Liq. 200, 361–368 (2014)CrossRefGoogle Scholar
  7. 7.
    Techen, A., Hille, C., Dosche, C., Kumke, M.U.: Fluorescence study of drug–carrier interactions in CTAB/PBS buffer model systems. J. Colloid Interface Sci. 377, 251–261 (2012)CrossRefPubMedGoogle Scholar
  8. 8.
    Sharma, R., Mahajan, R.K.: An investigation of binding ability of ionic surfactants with trifluoperazine dihydrochloride: insights from surface tension, electronic absorption and fluorescence measurements. RSC Adv. 2, 9571–9583 (2012)CrossRefGoogle Scholar
  9. 9.
    Azeem, W., John, P., Nazar, M.F., Khan, I.U., Riaz, A., Sharif, S.: Spectral and chromatographic characterization of fixed dose combination norfloxacin and metronidazole interacting with cetyltrimethylammonium bromide. J. Mol. Liq. 244, 135–140 (2017)CrossRefGoogle Scholar
  10. 10.
    Seitkalieva, M.M., Kashin, A.S., Egorova, K.S., Ananikov, V.P.: Ionic liquids as tunable toxicity storage media for sustainable chemical waste management. ACS Sustain. Chem. Eng. 6, 719–726 (2018)CrossRefGoogle Scholar
  11. 11.
    Lopez, F., Cuomo, F., Ceglie, A., Ambrosone, L., Palazzo, G.: Quenching and dequenching of pyrene fluorescence by nucleotide monophosphates in cationic micelles. J. Phys. Chem. B. 112, 7338–7344 (2008)CrossRefPubMedGoogle Scholar
  12. 12.
    Bag, S.S., Kundu, R.: Sensing of micellar microenvironment with dual fluorescent probe, triazolylpyrene (TNDMBPy). J. Fluoresc. 23, 929–938 (2013)CrossRefPubMedGoogle Scholar
  13. 13.
    Nazar, M.F., Azeem, W., Rana, U.A., Ashfaq, M., Lashin, A., Al-Arifi, N., Rahman, H.M.A., Lazim, A.M., Mehmood, A.: pH-dependent probing of levofloxacin assimilated in surfactant mediated assemblies: Insights from photoluminescent and chromatographic measurements. J. Mol. Liq. 220, 26–32 (2016)CrossRefGoogle Scholar
  14. 14.
    Nazar, M.F., Raheel, M., Shah, S.S., Danish, M., Ashfaq, M., Zafar, M.N.: Thermodynamic characteristics and spectral-luminescent properties of N-m-tolylbenzamide in microhetrogeneous surfactant self-assemblies. J. Solution Chem. 43, 632–647 (2014)CrossRefGoogle Scholar
  15. 15.
    Wang, J., Kong, L., Shen, W., Hu, X., Shen, Y., Liu, S.: Synergistic fluorescence quenching of quinolone antibiotics by palladium(II) and sodium dodecyl benzene sulfonate and the analytical application. Anal. Methods 6, 4343–4352 (2014)CrossRefGoogle Scholar
  16. 16.
    Shahabadi, N., Fili, S.M., Kheirdoosh, F.: Study on the interaction of the drug mesalamine with calf thymus DNA using molecular docking and spectroscopic techniques. J. Photochem. Photobiol. B 128, 20–26 (2013)CrossRefPubMedGoogle Scholar
  17. 17.
    Tu, S., Jiang, X., Zhou, L., Yin, W., Wang, H., Duan, M., Liu, P., Jiang, X.: Study of the interaction of gemini surfactant NAE12-4-12 with bovine serum albumin. J. Lumin. 132, 381–385 (2012)CrossRefGoogle Scholar
  18. 18.
    Duman, O., Tunc, S., Kancı, B.: Spectrophotometric studies on the interactions of C.I. Basic Red 9 and C.I. Acid Blue 25 with hexadecyltrimethylammonium bromide in cationic surfactant micelles. Fluid Phase Equilib. 301, 56–61 (2011)CrossRefGoogle Scholar
  19. 19.
    Din, K., Al-Ahmadi, M.D.A., Naqvi, A.Z., Akram, M.: Conductometric study of antidepressant drug–cationic surfactant mixed micelles in aqueous solution. Colloids Surf. B 64, 65–69 (2008)CrossRefGoogle Scholar
  20. 20.
    Alam, M.S., Ghosh, G., Mandal, A.B., Din, K.: Aggregation behavior and interaction of an amphiphilic drug imipramine hydrochloride with cationic surfactant cetyltrimethylammonium bromide: light scattering studies. Colloids Surf. B 88, 779–784 (2011)CrossRefGoogle Scholar
  21. 21.
    Fan, Y., Wu, C., Wang, M., Wang, Y., Thomas, R.K.: Self-assembled structures of anionic hydrophobically modified polyacrylamide with star-shaped trimeric and hexameric quaternary ammonium surfactants. Langmuir 30, 6660–6668 (2014)CrossRefPubMedGoogle Scholar
  22. 22.
    Rub, M.A., Asiri, A.M., Naqvi, A.Z., Rahman, M.M., Khan, S.B., Din, K.: Mixed micellization between amphiphilic drug promethazine hydrochloride and cationic surfactant (conventional as well as gemini). J. Mol. Liq. 177, 19–25 (2013)CrossRefGoogle Scholar
  23. 23.
    Ito, E., Yip, K.W., Katz, D., Fonseca, S.B., Hedley, D.W., Chow, S., Xu, G.W., Wood, T.E., Bastianutto, C., Schimmer, A.D., Kelley, S.O., Liu, F.F.: Potential use of cetrimonium bromide as an apoptosis-promoting anticancer agent for head and neck cancer. Mol. Pharmacol. 76, 969–983 (2009)CrossRefPubMedGoogle Scholar
  24. 24.
    Peleg, A.Y., Seifert, H., Paterson, D.L.: Acinetobacter baumannii: emergence of a successful pathogen. Clin. Microbiol. Rev. 21, 538–582 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Giraud, I., Rapp, M., Maurizis, J.C., Madelmont, J.C.: Synthesis and in vitro evaluation of quaternary ammonium derivatives of chlorambucil and melphalan, anticancer drugs designed for the chemotherapy of chondrosarcoma. J. Med. Chem. 45, 2116–2119 (2002)CrossRefPubMedGoogle Scholar
  26. 26.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, E.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J., Gaussian 09 edn., Gaussian, Inc.: Wallingford CT (2009)Google Scholar
  27. 27.
    Li, Y., Liu, Y.Y., Chen, X.J., Xiong, X.H., Li, F.S.: Synthesis, spectroscopic characterization, X-ray structure, and DFT calculations of some new 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxamides. PLoS ONE 9, e91361 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Li, Y., Zhang, H., Liu, Y.Y., Li, F.S., Liu, X.N.: Synthesis, characterization, and quantum chemical calculation studies on 3-(3-nitrophenylsulfonyl)aniline. J. Mol. Struct. 997, 110–116 (2011)CrossRefGoogle Scholar
  29. 29.
    Fukui, K.: Role of frontier orbitals in chemical reactions. Science 218, 747–754 (1982)CrossRefPubMedGoogle Scholar
  30. 30.
    Boens, N., Wang, L., Leen, V., Yuan, P., Verbelen, B., Dehaen, W., der Auweraer, M.V., de Borggraeve, W.D., Meervelt, L.V., Jacobs, J., Beljonne, D., Tonnelé, C., Lazzaroni, R., Ruedas-Rama, M.J., Orte, A., Crovetto, L., Talavera, E.M., Alvarez-Pez, J.M.: 8-HaloBODIPYs and their 8-(C, N, O, S) substituted analogues: solvent dependent UV–Vis spectroscopy, variable temperature NMR, crystal structure determination, and quantum chemical calculations. J. Phys. Chem. A 118, 1576–1594 (2014)CrossRefPubMedGoogle Scholar
  31. 31.
    Kowalska, P., Gawinkowski, S., Sarma, T., Panda, P.K., Waluk, J.: Structure, electronic states, and anion-binding properties of cyclo[4]naphthobipyrroles. J. Phys. Chem. A 118, 1038–1046 (2014)CrossRefPubMedGoogle Scholar
  32. 32.
    Mebi, C.A.: DFT study on structure, electronic properties, and reactivity of cis-isomers of [(NC5H4-S)2Fe(CO)2]. J. Chem. Sci. 123, 727–731 (2011)CrossRefGoogle Scholar
  33. 33.
    Fuentealba, P., David, J., Guerra, D.: Density functional based reactivity parameters: thermodynamic or kinetic concepts? J. Mol. Struct. THEOCHEM 943, 127–137 (2010)CrossRefGoogle Scholar
  34. 34.
    Parr, R.G., Donnelly, R.A., Levy, M., Palke, W.E.: Electronegativity: the density functional viewpoint. J. Chem. Phys. 68, 3801–3807 (1978)CrossRefGoogle Scholar
  35. 35.
    Parr, R.G., Szentpály, L.V., Liu, S.: Electrophilicity index. J. Am. Chem. Soc. 121, 1922–1924 (1999)CrossRefGoogle Scholar
  36. 36.
    Rosen, M.J., Kunjappu, J.T.: Surfactants and Interfacial Phenomena, 4th edn., pp. 150–225. Willey, Hoboken (2012)CrossRefGoogle Scholar
  37. 37.
    Zhou, T., Ao, M., Xu, G., Liu, T., Zhang, J.: Interactions of bovine serum albumin with cationic imidazolium and quaternary ammonium gemini surfactants: effects of surfactant architecture. J. Colloid Interface Sci. 389, 175–181 (2013)CrossRefPubMedGoogle Scholar
  38. 38.
    Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)CrossRefGoogle Scholar
  39. 39.
    Ahmad, B., Parveen, S., Khan, R.H.: Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin: a novel approach directly assigning binding site. Biomacromol 7, 1350–1356 (2006)CrossRefGoogle Scholar
  40. 40.
    Jandera, P., Fischer, J.: Chromatographic behaviour in reversed-phase high-performance liquid chromatography with micellar and submicellar mobile phases. J. Chromatogr. A 728, 279–298 (1996)CrossRefGoogle Scholar
  41. 41.
    Čudina, O., Brborić, J., Janković, I., Karljiković-Rajić, K., Vladimirov, S.: Study of Valsartan interaction with micelles as a model system for biomembranes. Colloids Surf. B 65, 80–84 (2008)CrossRefGoogle Scholar
  42. 42.
    Pignatello, R., Musumeci, T., Basile, L., Carbone, C., Puglisi, G.: Biomembrane models and drug-biomembrane interaction studies: involvement in drug design and development. J. Pharm. Bioallied Sci. 3, 4–14 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tien, T.T.D., Uyen, P.N.D., Huong, T.B., Trang, T.N.: Effect of electrostatic interaction between fluoxetine and lipid membranes on the partitioning of fluoxetine investigated using second derivative spectrophotometry and FTIR. Chem. Phys. Lipids 207, 10–23 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Muhammad Faizan Nazar
    • 1
    • 5
  • Waqar Azeem
    • 2
  • Alina Kayani
    • 1
  • Muhammad Zubair
    • 1
  • Peter John
    • 2
  • Asif Mahmood
    • 3
  • Muhammad Ashfaq
    • 1
  • Muhammad Nadeem Zafar
    • 1
  • Sajjad Hussain Sumrra
    • 1
  • Muhammad Naveed Zafar
    • 4
  1. 1.Department of ChemistryUniversity of GujratGujratPakistan
  2. 2.Department of ChemistryGovernment College UniversityLahorePakistan
  3. 3.University of the Chinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.Department of ChemistryQuaid-i-Azam UniversityIslamabadPakistan
  5. 5.Office # JBH-09, Department of Chemistry, Faculty of Sciences, Hafiz Hayat CampusUniversity of GujratGujratPakistan

Personalised recommendations