Journal of Solution Chemistry

, Volume 47, Issue 11, pp 1711–1724 | Cite as

Physicochemical Investigation of HDDP Azomethine Dye as Turn-On Fluorescent Chemosensor for High Selectivity and Sensitivity of Al3+ Ions

  • Abdullah M. AsiriEmail author
  • Tariq R. Sobahi
  • Mona Mohammad Al-Amari
  • Mohammad Asad
  • Mohie E. M. Zayed
  • Salman A. KhanEmail author


4-[(2-Hydroxy-naphthalen-1-ylmethylene)-amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (HDDP) was synthesized by the reaction of 4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one with 2-hydroxy-l-naphthaldehyde. The structure was confirmed by the IR, 1H-NMR, 13C-NMR, and EI-MS spectra and elemental analysis. Physicochemical parameters of the HDDP such as extinction coefficient, oscillator strength, transition dipole moment, Stokes shift, and fluorescence quantum yield in different solvents were studied on the basis of polarities. The interactions of various metal ions with HDDP were also studied using steady state fluorescence measurements. The emission profile reveals that it acts as off–on type fluorescent chemosensor for selective and sensitive detection of Al3+ ions. Complexation stoichiometry and mechanism of enhancement were determined from a Benesi–Hildebrand plot.


Azomethine Stokes shift Dipole moment Chemosensor Metal ion 



The authors are thankful to the Chemistry Department at King Abdulaziz University for providing research facilities.


  1. 1.
    Havrylyuk, D., Roman, O., Lesyk, R.: Synthetic approaches, structure activity relationship and biological applications for pharmacologically attractive pyrazole/pyrazoline–thiazolidine-based hybrids. Eur. J. Med. Chem. 113, 145–166 (2016)CrossRefGoogle Scholar
  2. 2.
    Asiri, A.M., Khan, S.A.: Synthesis, characterization, and in vitro antibacterial activities of macromolecules derived from bis-chalcone. J. Heterocycl. Chem. 49, 1434–1438 (2012)CrossRefGoogle Scholar
  3. 3.
    Nayak, N., Ramprasad, J., Dalimba, U., Yogeeswari, P., Sriram, D.: Synthesis and antimycobacterial screening of new N-(4-(5-aryl-3-(5-methyl-1,3,4-oxadiazol-2-yl)-1H-pyrazol-1-yl)phenyl)-4-amide derivatives. Chin. Chem. Lett. 27, 365–369 (2016)CrossRefGoogle Scholar
  4. 4.
    Kumar, V., Kaur, K.: Fluorinated isoxazolines and isoxazoles: a synthetic perspective. J. Fluorine Chem. 180, 55–97 (2015)CrossRefGoogle Scholar
  5. 5.
    Obasi, L.N., Kaior, G.U., Rhyman, L., Alswaidan, I.A., Ramasami, P.: Synthesis, characterization, antimicrobial screening and computational studies of 4-[3-(4-methoxy-phenyl)-allylideneamino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one. J. Mol. Struct. 1120, 180–186 (2016)CrossRefGoogle Scholar
  6. 6.
    Steger, S., Matuszczak, B.: Synthesis of substituted 3-(3-chloro-1H-pyrazol-5-yl)quinoxalin-2(1H)ones. Tetrahedron 706, 763–6768 (2014)Google Scholar
  7. 7.
    Sztanke, K., Maziarka, A., Osink, A., Sztanke, M.: An insight into synthetic Schiff bases revealing antiproliferative activities in vitro. Bioorg. Med. Chem. 21, 3648–3666 (2013)CrossRefGoogle Scholar
  8. 8.
    Tan, X.J., Hao, X.Q., Zhao, Q.Z., Cheng, S.S., Song, L.Z.: Mono-Schiff-base or di-Schiff-base? Synthesis, spectroscopic, X-ray structural and DFT study of a series of Schiff-bases derived from benzil dihydrazone. J. Mol. Struct. 1099, 373–387 (2015)CrossRefGoogle Scholar
  9. 9.
    Khan, S.A., Asiri, A.M.: Physicochemical properties of novel methyl 2-{(E)-[(2-hydroxynaphthalen-1-yl)methylidene]amino}-4,5,6,7-tetrahydro-1-enzothiophene-3-carboxylate as turn-off fluorometric chemosensor for detection Fe3+ ion. J. Mol. Liq. 243, 85–90 (2017)CrossRefGoogle Scholar
  10. 10.
    Satam, M.A., Telore, R.D., Sekar, N.: Photophysical properties of Schiff’s bases from 3-(1,3-benzothiazol-2-yl)-2-hydroxynaphthalene-1-carbaldehyde. Spectrochim. Acta A 132, 678–686 (2014)CrossRefGoogle Scholar
  11. 11.
    Jia, J.H., Tao, X.M., Li, Y.J., Sheng, W.J., Zheng, Y.F.: Synthesis and third-order optical nonlinearities of ferrocenyl Schiff base. Chem. Phys. Lett. 514, 114–118 (2011)CrossRefGoogle Scholar
  12. 12.
    Cebeci, C., Kilicarslan, F.A., Gurbuz, O., Fırat, Y., Erden, I.: Synthesis and photovoltaic properties of organic photosensitizer using D-π-D type 4,5-diazafluorene ligand and derivatives for efficient dye-sensitized solar cell. Dyes Pigm. 134, 77–82 (2016)CrossRefGoogle Scholar
  13. 13.
    Sharbati, M.T., Rad, M.N.S., Behrouz, S., Gharavi, A., Emami, F.: Near infrared organic light-emitting diodes based on acceptor–donor–acceptor (ADA) using novel conjugated isatin Schiff bases. J. Lumin. 131, 553–558 (2011)CrossRefGoogle Scholar
  14. 14.
    Roy, N., Paul, P.C., Singh, T.S.: Fluorescence characteristics of Schiff base N,N-bis(salicylidene)trans1,2-diaminocyclohexane in the presence of bile acid host. J. Mol. Liq. 21, 1052–1059 (2015)CrossRefGoogle Scholar
  15. 15.
    Keshk, S.M.A.S., Ramadan, A.M., Bondock, S.: Physicochemical characterization of novel Schiff bases derived from developed bacterial cellulose 2,3-dialdehyde. Carbohydr. Polym. 127, 246–251 (2015)CrossRefGoogle Scholar
  16. 16.
    Kupeli, S.: Trace and rare-earth element behaviors during alteration and mineralization in the Attepe iron deposits (Feke-Adana, southern Turkey). J. Geochem. Explor. 105, 51–74 (2010)CrossRefGoogle Scholar
  17. 17.
    Fatemi, S.J.A., Kadir, F.H.A., Williamson, D.J., Moore, G.R.: The uptake, storage, and mobilization of iron and aluminum in biology. Adv. Inorg. Chem. 36, 409–448 (1991)CrossRefGoogle Scholar
  18. 18.
    Stah, T., Brunn, H.: Aluminium content of selected foods and food products. Environ. Sci. Eur. 2, 37–45 (2011)CrossRefGoogle Scholar
  19. 19.
    Ul Hassan, A., Hassan, G., Rasool, Z.: Role of stem cells in treatment of neurological disorder. Int. J. Health Sci. (Qassim) 3, 227–233 (2009)Google Scholar
  20. 20.
    Walton, J.R.: An aluminum-based rat model for Alzheimer’s disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration. J. Inorg. Biochem. 101, 1275–1284 (2007)CrossRefGoogle Scholar
  21. 21.
    Ren, J., Tian, H.: Thermally stable merocyanine form of photochromic spiropyran with aluminum ion as a reversible photodriven sensor in aqueous solution. Sensors 7, 3166–3178 (2007)CrossRefGoogle Scholar
  22. 22.
    Bencini, A., Lippolis, V.: Probing biologically and environmentally important metal ions with fluorescent chemosensors: thermodynamic versus optical response selectivity in some study cases. Coord. Chem. Rev. 256, 149–169 (2012)CrossRefGoogle Scholar
  23. 23.
    Sarkar, D., Ghosh, P., Gharami, S., Mondal, T.K., Murmu, N.: A novel coumarin based molecular switch for the sequential detection of Al3+ and F: application in lung cancer live cell imaging and construction of logic gate. Sens. Actuators, B 242, 338–346 (2017)CrossRefGoogle Scholar
  24. 24.
    Liu, Y., Yang, E.B., Han, R., Zhang, D., Zhao, Y.F.: A new rhodamine-based fluorescent chemosensor for mercury in aqueous media. Chin. Chem. Lett. 25, 1065–1068 (2014)CrossRefGoogle Scholar
  25. 25.
    Chen, C., Liu, H., Zhang, B., Wang, Y., Jiang, Y.: A simple benzimidazole quinoline-conjugate fluorescent chemosensor for highly selective detection of Ag+. Tetrahedron 72, 3980–3985 (2016)CrossRefGoogle Scholar
  26. 26.
    Zheng, X., Lee, K.H., Liu, H., Park, S.Y., Kim, Y.G.: A bis(pyridine-2-ylmethyl) amine-based selective and sensitive colorimetric and fluorescent chemosensor for Cu2+. Sens. Actuators, B 222, 28–34 (2016)CrossRefGoogle Scholar
  27. 27.
    Asiri, A.M., Khan, S.A.: Synthesis, anti-bacterial activities of some novel Schiff bases derived from amino phenazone. Molecules 15, 6850–6858 (2010)CrossRefGoogle Scholar
  28. 28.
    Khan, S.A.: Green synthesis, spectrofluorometric characterization and antibacterial activity of heterocyclic compound from chalcone on the basis of in vitro and quantum chemistry calculation. J. Fluoresc. 27, 929–937 (2017)CrossRefGoogle Scholar
  29. 29.
    Wu, H., Chen, Y., Rao, C., Fan, D., Liu, C.: A selective fluorescent and colorimetric probe for cyanide based on dual-site controlled intramolecular charge transfer–photoinduced electron transfer fluorescence resonance energy transfer. Tetrahedron Lett. 57, 4969–4973 (2016)CrossRefGoogle Scholar
  30. 30.
    Suppan, P.: Invited review solvatochromic shifts: the influence of the medium on the energy of electronic states. J. Photochem. Photobiol., A 50, 293–330 (1990)CrossRefGoogle Scholar
  31. 31.
    Biradar, D.S., Siddlingeshwar, B., Hanagodimath, S.M.: Estimation of ground and excited state dipole moments of some laser dyes. J. Mol. Struct. 875, 108–112 (2008)CrossRefGoogle Scholar
  32. 32.
    Szczepanik, B., Styrcz, S., Gora, M.: Protolytic dissociation of cyanoanilines in the ground and excited state in water and methanol solutions. Spectrochim. Acta, Part A 71, 403–409 (2008)CrossRefGoogle Scholar
  33. 33.
    Mao, M., Xiao, S., Yi, T., Zou, K.: Synthesis and characterization of novel fluorescent BOPIM dyes with large Stokes shift. J. Fluorine Chem. 132, 612–616 (2011)CrossRefGoogle Scholar
  34. 34.
    Ganguly, P.: Photophysics of some cationic dyes in aqueous micellar dispersions of surfactants and in different solvents. J. Mol. Liq. 151, 67–73 (2010)CrossRefGoogle Scholar
  35. 35.
    Siddlingeshwar, B., Hanagodimath, S.M.: Estimation of first excited singlet-state dipole moments of aminoanthraquinones by solvatochromic method. Spectrochim. Acta A 72, 490–495 (2009)CrossRefGoogle Scholar
  36. 36.
    Climent, C., Carreras, A., Alemany, P., Casanova, D.: A push-pull organic dye with a quinoidal thiophene linker: photophysical properties and solvent effects. Chem. Phys. Lett. 663, 45–50 (2016)CrossRefGoogle Scholar
  37. 37.
    Khan, S.A., Asiri, A.M.: Fluorescence quenching of environmentally benign highly fluorescence donor (D)-π-acceptor (A)-π-donor (D) quinoline dye by silver nanoparticles and anionic surfactant in liquid stage. J. Mol. Liq. 221, 381–385 (2016)CrossRefGoogle Scholar
  38. 38.
    Reichardt, C.: Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94, 2319–2358 (1994)CrossRefGoogle Scholar
  39. 39.
    Zhou, D., Sun, C., Chen, C., Cui, X., Li, W.: Research of a highly selective fluorescent chemosensor for aluminum(III) ions based on photoinduced electron transfer. J. Mol. Struct. 1079, 315–320 (2015)CrossRefGoogle Scholar
  40. 40.
    Choi, Y.W., Lee, J.J., Nam, E., Lim, M.H., Kim, C.: A fluorescent chemosensor for Al3+ based on julolidine and tryptophan moieties. Tetrahedron 72, 1998–2005 (2016)CrossRefGoogle Scholar
  41. 41.
    Liao, Z.C., Yang, Z.Y., Li, Y., Wang, B.D., Zhou, Q.X.: A simple structure fluorescent chemosensor for high selectivity and sensitivity of aluminum ions. Dyes Pigm. 97, 124–128 (2013)CrossRefGoogle Scholar
  42. 42.
    Marwani, H.M., Asiri, A.M., Khan, S.A.: Spectral, stoichiometric ratio, physicochemical, polarity and photostability studies of newly synthesized chalcone dye in organized media. J. Lumin. 136, 296–302 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Abdullah M. Asiri
    • 1
    • 2
    Email author
  • Tariq R. Sobahi
    • 1
  • Mona Mohammad Al-Amari
    • 1
  • Mohammad Asad
    • 1
  • Mohie E. M. Zayed
    • 1
  • Salman A. Khan
    • 1
    Email author
  1. 1.Chemistry Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Center of Excellence for Advanced Materials Research (CEAMR)King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations