Extraction of \( {\text{Np}}^{4+} \) and \( {\text{NpO}}_{2}^{2+} \) from Nitric Acid Medium Using TODGA in Room Temperature Ionic Liquids

Article
  • 26 Downloads

Abstract

Extraction of Np4+ and \( {\text{NpO}}_{2}^{2 + } \) was carried out from nitric acid feeds using solutions of N,N,N′,N′-tetra-n-octyldiglycolamide (TODGA) in two imidazolium-based room temperature ionic liquids, viz., 1-butyl-3-methylimidazolium bis(trifluoromethanesulphonyl) imide ([C4mim][NTf2]) and 1-octyl-3-methylimidazolium bis(trifluoromethanesulphonyl) imide ([C8mim][NTf2]). The extraction equilibrium was attained within 2 h for both the metal ions in both the ionic liquids. While a cation exchange mechanism is proposed for the extraction of \( {\text{NpO}}_{2}^{2 + } , \) an ion-pair mechanism of extraction is proposed for the Np4+ ion. The nature of the extracted species was determined by carrying out experiments at varying concentrations of TODGA, and species of the type Np(L)2(NO3)4 and NpO2(L)2+ were found to be extracted in 3 mol·dm−3 HNO3. The identification of these extracted species was also supported from the variable nitrate and C4mim+ ion concentration experiments.

Keywords

Neptunium TODGA Extraction Ionic liquid 

Notes

Acknowledgements

The authors thank Dr. P.K. Pujari, Head, Radiochemistry Division, Bhabha Atomic Research Centre for his keen interest in this work.

References

  1. 1.
    Swanson, J.L.: PUREX process flowsheets. In: Schulz, W.W., Burger, L.L., Navratil, J.D., Bender, K.P. (eds.) Science and Technology of Tributyl Phosphate. CRC Press, Inc., Boca Raton (1984)Google Scholar
  2. 2.
    Yoshida, Z., Johnson, S.G., Kimura, T., Krsul, J.R.: Chapter 6. In: Morss, L.R., Edelstein, N.M., Fuger, J., Katz, J.J. (eds.) Actinide and Transactinide Elements, vol. 2. Springer, Dordrecht (2006)Google Scholar
  3. 3.
    Vienna, J.D., Ryan, J.V., Gin, S., Inagaki, Y.: Current understanding and remaining challenges in modeling long-term degradation of borosilicate nuclear waste glasses. Int. J. Appl. Glass Sci. 4, 283–294 (2013)CrossRefGoogle Scholar
  4. 4.
    Clark, D.L., Hecker, S.S., Jarvinen, G.D., Neu, M.P.: In: Morss, L.R., Edelstein, N.M., Fuger, J., Katz, J.J. (eds.) Actinide and Transactinide Elements, vol. 2, p. 815. Springer, Dordrecht (2006)Google Scholar
  5. 5.
    Alcock, K., Best, G.F., Hesford, E., McKay, H.A.C.: Tri-n-butyl phosphate as an extracting solvent for inorganic nitrates—V: further results for the tetra- and hexavalent actinide nitrates. J. Inorg. Nucl. Chem. 6, 328–333 (1958)CrossRefGoogle Scholar
  6. 6.
    Arhland, S.: Chapter 21. In: Katz, J.J., Seaborg, G.T., Morss, L.R. (eds.) The Chemistry of the Actinide Elements, 2nd edn, pp. 1524–1526. Chapman and Hall, New York (1986)Google Scholar
  7. 7.
    Wisnubroto, D.S., Nagasaki, S., Enokida, Y., Suzuki, A.: Effect of TBP on solvent extraction of Np(V) with n-octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide. J. Nucl. Sci. Technol. 29, 263–268 (1992)CrossRefGoogle Scholar
  8. 8.
    Carrot, M.J., Gregson, C.R., Taylor, R.J.: Neptunium extraction and stability in the GANEX solvent: 0.2 M TODGA/0.5 M DMDOHEMA/kerosene. Solvent Extr. Ion Exch. 31, 463–482 (2013)CrossRefGoogle Scholar
  9. 9.
    Ansari, S.A., Gujar, R.B., Prabhu, D.R., Pathak, P.N., Mohapatra, P.K.: Counter-current extraction of neptunium from simulated pressurized heavy water reactor high level waste using N,N,N′,N′-tetraoctyl diglycolamide. Solvent Extr. Ion Exch. 30, 457–468 (2012)CrossRefGoogle Scholar
  10. 10.
    Ansari, S.A., Pathak, P.N., Mohapatra, P.K., Manchanda, V.K.: Actinide partitioning of minor actinides by different processes. Sep. Purif. Rev. 40, 43–76 (2011)CrossRefGoogle Scholar
  11. 11.
    Welton, T.: Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99, 2071–2083 (1999)CrossRefGoogle Scholar
  12. 12.
    Binnemans, K.: Lanthanides and actinides in ionic liquids. Chem. Rev. 107, 2592–2614 (2007)CrossRefGoogle Scholar
  13. 13.
    Baker, G.A., Baker, S.N., Pandey, S., Bright, F.V.: An analytical view of ionic liquids. Analyst 130, 800–808 (2005)CrossRefGoogle Scholar
  14. 14.
    Rogers, R.D., Sheddon, K.R.: Ionic liquids: solvents for the future? Science 302, 792–793 (2003)CrossRefGoogle Scholar
  15. 15.
    Allen, D., Baston, G., Bradley, A.E., Gorman, T., Haile, A., Hamblett, I., Hatter, J.E., Healey, M.J.F., Hodgson, B., Lewin, R., Lovell, K.V., Newton, B., Pitner, W.R., Rooney, D.W., Sanders, D., Seddon, K.R., Sims, H.E., Thied, R.C.: An investigation of the radiochemical stability of ionic liquids. Green Chem. 4, 152–158 (2002)CrossRefGoogle Scholar
  16. 16.
    Huddleston, J.G., Willauer, H.D., Swatloski, R.P., Visser, A.E., Rogers, R.D.: Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem. Commun. (1998).  https://doi.org/10.1039/A803999B Google Scholar
  17. 17.
    Billard, I.: Ionic liquids: new hopes for efficient lanthanide/actinide extraction and separation. In: Bunzli, J.C.G., Pecharsky, V. (eds.) Handbook on the Physics and Chemistry of Rare Earths, pp. 213–373. Elsevier Science Publishers B.V., Amsterdam (2013)Google Scholar
  18. 18.
    Visser, A.E., Swatloski, R.P., Reichert, W.M., Griffin, S.T., Rogers, R.D.: Traditional extractants in nontraditional solvents: groups 1 and 2 extraction by crown ethers in room-temperature ionic liquids. Ind. Eng. Chem. Res. 39, 3596–3604 (2000)CrossRefGoogle Scholar
  19. 19.
    Kolarik, Z.: Ionic liquids: how far to the extend the potential of solvent extraction of f-elements? Solvent Extr. Ion Exch. 31, 46–60 (2013)CrossRefGoogle Scholar
  20. 20.
    Sun, X., Luo, H., Dai, S.: Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem. Rev. 112, 2100–2128 (2012)CrossRefGoogle Scholar
  21. 21.
    Vasudeva Rao, P.R., Venkatesan, K.A., Rout, A., Srinivasan, T.G., Nagarajan, K.: Potential applications of room temperature ionic liquids for fission products and actinide separation. Sep. Sci. Technol. 47, 204–222 (2012)CrossRefGoogle Scholar
  22. 22.
    Mohapatra, P.K.: Actinide ion extraction using room temperature ionic liquids: opportunities and challenges for nuclear fuel cycle applications. Dalton Trans. 46, 1730–1747 (2017)CrossRefGoogle Scholar
  23. 23.
    Patil, A.B., Pathak, P.N., Shinde, V.S., Godbole, S.V., Mohapatra, P.K.: Efficient solvent system containing malonamides in room temperature ionic liquids: actinide extraction, fluorescence and radiolytic degradation studies. Dalton Trans. 42, 1519–1529 (2013)CrossRefGoogle Scholar
  24. 24.
    Sengupta, A., Mohapatra, P.K., Pathak, P.N., Ghanty, T.K., Iqbal, M., Verboom, W.: Studies on neptunium complexation with CMPO- and diglycolamide-functionalized ionic liquids: experimental and computational studies. N. J. Chem. 41, 836–844 (2017)CrossRefGoogle Scholar
  25. 25.
    Gujar, R.B., Ansari, S.A., Murali, M.S., Mohapatra, P.K., Manchanda, V.K.: Comparative evaluation of two substituted diglycolamide extractants for ‘actinide partitioning’. J. Radioanal. Nucl. Chem. 284, 377–385 (2010)CrossRefGoogle Scholar
  26. 26.
    Mohapatra, P.K., Ruikar, P.B., Manchanda, V.K.: Separation of neptunium and plutonium from acidic medium using 3-phenyl-4-benzoyl-5-isoxazolone. Radiochim. Acta 90, 323–327 (2002)CrossRefGoogle Scholar
  27. 27.
    Ansari, S.A., Mohapatra, P.K., Mazan, V., Billard, I.: Extraction of actinides by tertiary amines in room temperature ionic liquids: evidence for anion exchange as a major process at high acidity and impact of acid nature. RSC Adv. 5, 35821–35829 (2015)CrossRefGoogle Scholar
  28. 28.
    Rout, A., Venkatesan, K.A., Srinivasan, T.G., Vasudeva Rao, P.R.: Extraction behavior of actinides and fission products in amide functionalized ionic liquids. Sep. Purif. Technol. 97, 164–171 (2012)CrossRefGoogle Scholar
  29. 29.
    Arhland, S.: Chapter 21. In: Katz, J.J., Seaborg, G.T., Morss, L.R. (eds.) The Chemistry of the Actinide Elements, 2nd edn, pp. 1497–1516. Chapman and Hall, New York (1986)Google Scholar
  30. 30.
    Ansari, S.A., Gujar, R.B., Mohapatra, P.K.: Complexation of tetraalkyl diglycolamides with trivalent f-cations in a room temperature ionic liquid: extraction and spectroscopic investigations. Dalton Trans. 46, 7584–7593 (2017)CrossRefGoogle Scholar
  31. 31.
    Prabhu, D.R., Raut, D.R., Murali, M.S., Mohapatra, P.K.: Extraction of plutonium(IV) by diglycolamide extractants in room temperature ionic liquids. Radiochim. Acta 105, 285–293 (2017)CrossRefGoogle Scholar
  32. 32.
    Sun, M., Yuan, L.Y., Tan, Y., Zhao, Y.L., Chai, Z.F., Shi, W.Q.: Solvent extraction of uranium(VI) by a dipicolinamide using a room-temperature ionic liquid. Radiochim. Acta 102, 87–92 (2014)Google Scholar
  33. 33.
    Sypula, M., Ouadi, A., Gaillard, C., Billard, I.: Kinetics of metal extraction in ionic liquids: Eu3+/HNO3/TODGA/[C1C4mim][Tf2N] as a case study. RSC Adv. 3, 10736–10744 (2013)CrossRefGoogle Scholar
  34. 34.
    Kraus, K.A., Nelson, F.: Hydrolytic behavior of metal ions: I. The acid constants of uranium(IV) and plutonium(IV). J. Am. Chem. Soc. 72, 3901–3906 (1950)CrossRefGoogle Scholar
  35. 35.
    Giridhar, P., Venkatesan, K.A., Srinivasan, T.G., Vasudeva Rao, P.R.: Comparison of diluent characteristics of imidazolium hexafluorophosphate ionic liquid with n-dodecane. J. Nucl. Radiochem. Sci. 5, 17–20 (2004)CrossRefGoogle Scholar
  36. 36.
    Billard, I., Ouadi, A., Jobin, E., Champion, J., Gaillard, C., Georg, S.: Understanding the extraction mechanism in ionic liquids: UO2+/HNO3/TBP/C4mimTf2N as a case study. Solvent Extr. Ion Exch. 29, 577–601 (2011)CrossRefGoogle Scholar
  37. 37.
    Dietz, M.L., Stepinski, D.C.: Anion concentration-dependent partitioning mechanism in the extraction of uranium into room-temperature ionic liquids. Talanta 75, 598–603 (2008)CrossRefGoogle Scholar
  38. 38.
    Prabhu, D.R., Mohapatra, P.K., Raut, D.R., Pathak, P.N., Billard, I.: Extraction of uranium(VI) from nitric acid solutions using N, N-dihexyloctanamide in ionic liquids: solvent extraction and spectroscopic studies. Solvent Extr. Ion Exch. 35, 423–438 (2017)CrossRefGoogle Scholar
  39. 39.
    Murali, M.S., Bonville, N., Choppin, G.R.: Uranyl ion extraction into room temperature ionic liquids: species determination by ESI and MALDI-MS. Solvent Extr. Ion Exch. 28, 495–509 (2010)CrossRefGoogle Scholar
  40. 40.
    Paramanik, M., Raut, D.R., Sengupta, A., Ghosh, S.K., Mohapatra, P.K.: A trialkyl phosphine oxide functionalized task specific ionic liquid for actinide ion complexation: extraction and spectroscopic studies. RSC Adv. 6, 19763–19767 (2016)CrossRefGoogle Scholar
  41. 41.
    Huang, X., Zhang, Q., Liu, J., He, H., Zhu, W., Wang, X.: Solvent extraction of Pu(IV) with TODGA in C6mimTf2N. J. Radioanal. Nucl. Chem. 298, 41–46 (2013)CrossRefGoogle Scholar
  42. 42.
    Panja, S., Mohapatra, P.K., Tripathi, S.C., Gandhi, P.M., Janardan, P.: A highly efficient solvent system containing TODGA in room temperature ionic liquids for actinide extraction. Sep. Purif. Technol. 96, 289–295 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Radiochemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations