Journal of Solution Chemistry

, Volume 47, Issue 3, pp 528–543 | Cite as

Thermodynamic Study on the Protonation and Na+, Ca2+, Mg2+-Complexation of a Biodegradable Chelant (HEIDA) at Different Ionic Strengths and Temperatures

  • Kavosh Majlesi
  • Clemente Bretti
  • Rosalia Maria Cigala
  • Concetta De Stefano
  • Kimia Majlesi
  • Silvio Sammartano
Article
  • 30 Downloads

Abstract

A potentiometric method has been used for the determination of the protonation constants of N-(2-hydroxyethyl)iminodiacetic acid (HEIDA or L) at various temperatures 283.15 ≤ T/K ≤ 383.15 and different ionic strengths of NaCl(aq), 0.12 ≤ I/mol·kg−1 ≤ 4.84. Ionic strength dependence parameters were calculated using a Debye–Hückel type equation, Specific Ion Interaction Theory and Pitzer equations. Protonation constants at infinite dilution calculated by the SIT model are \( \log_{10} \left( {{}^{T}K_{1}^{\text{H}} } \right) = 8.998 \pm 0.008 \) (amino group), \( \log_{10} \left( {{}^{T}K_{2}^{\text{H}} } \right) = 2.515 \pm 0.009 \) and \( \log_{10} \left( {{}^{T}K_{3}^{\text{H}} } \right) = 1.06 \pm 0.002 \) (carboxylic groups). The formation constants of HEIDA complexes with sodium, calcium and magnesium were determined. In the first case, the formation of a weak complex species, NaL, was found and the stability constant value at infinite dilution is log10KNaL = 0.78 ± 0.23. For Ca2+ and Mg2+, the CaL, CaHL, CaL2 and MgL species were found, respectively. The calculated stability constants for the calcium complexes at T = 298.15 K and I = 0.150 mol·dm−3 are: log10βCaL = 4.92 ± 0.01, log10βCaHL = 11.11 ± 0.02 and \( \log_{10} \beta_{\text{Ca{L}}_{2}} \) = 7.84 ± 0.03, while for the magnesium complex (at I = 0.176 mol·dm−3): log10βMgL = 2.928 ± 0.006. Protonation thermodynamic functions have also been calculated and interpreted.

Keywords

HEIDA Biodegradable ligands Protonation constant Stability constant Ionic strength dependence Temperature dependence 

Notes

Acknowledgements

Kavosh Majlesi thanks the Islamic Azad University, Science and Research Branch, Tehran, Iran for financial support through Research Project No. 20332.

Supplementary material

10953_2018_734_MOESM1_ESM.docx (28 kb)
Supplementary material 1 (DOCX 27 kb)

References

  1. 1.
    Dissolvine Chelates Product Guide. Akzo Nobel Functional Chemicals B.V., Amsterdam (2015)Google Scholar
  2. 2.
    Lynn, J.B., Fries, C.E., Homberg, O.A.: Studies on detergent phosphate replacements. 1. Aerobic biodegradation of sodium 2-hydroxyethyliminodiacetate. J. Am. Oil Chem. Soc. 52, 41–43 (1975)CrossRefGoogle Scholar
  3. 3.
    Crump, D.K., Wilson, D.A.: Formulations with unexpected cleaning performance incorporating a biodegradable chelant. United States Patent, US20110281784 (2011)Google Scholar
  4. 4.
    Giles, M.R., Dixon, N.J.: Automatic dishwashing composition. International Patent, WO2012038755 (2012)Google Scholar
  5. 5.
    Mahmoud, M., Elkatatny, S., Abdelgawad, K.Z.: Using high- and low-salinity seawater injection to maintain the oil reservoir pressure without damage. J. Petrol. Explor. Prod. Technol. 7, 589–596 (2017)CrossRefGoogle Scholar
  6. 6.
    Frihauf, J., Brommer, C., Bowe, S., Oliver, G.W.: Methods for improving the efficacy of anionic herbicides under hard water conditions and suitable compositions. PCT Int. Appl., WO 2014206835 A1 20141231 (2014)Google Scholar
  7. 7.
    McGillicuddy, N., Nesterenko, E.P., Nesterenko, P.N., Stack, E.M., Omamogho, J.O., Glennon, J.D., Paull, B.: A new N-hydroxyethyliminodiacetic acid modified core-shell silica phase for chelation ion chromatography of alkaline earth, transition and rare earth elements. J. Chromatogr. A 1321, 56–64 (2013)CrossRefGoogle Scholar
  8. 8.
    McGillicuddy, N., Nesterenko, E.P., Nesterenko, P.N., Jones, P., Paull, B.: Chelation ion chromatography of alkaline earth and transition metals a using monolithic silica column with bonded N-hydroxyethyliminodiacetic acid functional groups. J. Chromatogr. A 1276, 102–111 (2013)CrossRefGoogle Scholar
  9. 9.
    McGillicuddy, N., Nesterenko, E.P., Jones, P., Caldarola, D., Onida, B., Townsend, A.T., Mitev, D.P., Nesterenko, P.N., Paull, B.: Direct determination of transition metals in mussel tissue digests using high-performance chelation ion chromatography with monolithic silica based chelating ion exchangers. Anal. Meth. 5, 2666–2673 (2013)CrossRefGoogle Scholar
  10. 10.
    Kutolei, D.A., Shtemenko, A.V.: Heteroligand copper(II) complexes with hydroxyethyleneiminodiacetic acid and bidentate nitrogen containing ligands: structures and properties. Russ. J. Coord. Chem. 39, 857–866 (2013)CrossRefGoogle Scholar
  11. 11.
    Li, L., Nasr-El-Din, H.A., Crews, J.B., Cawiezel, K.E.: Impact of organic acids/chelating agents on the rheological properties of an amidoamine-oxide surfactant. SPE Product. Operat. 26, 30–40 (2011)CrossRefGoogle Scholar
  12. 12.
    McLaren, K.P., Drozd, J.C., Renn, G.: Alkaline compositions for use in laundry industry and methods of producing same. U.S. Pat. Appl. Publ., US 20100204082 A1 20100812 (2010)Google Scholar
  13. 13.
    Wen, J., Zhao, K., Gu, T., Raad, I.: Chelators enhanced biocide inhibition of planktonic sulfate-reducing bacterial growth. World J. Microbiol. Biotechnol. 26, 1053–1057 (2010)CrossRefGoogle Scholar
  14. 14.
    Desthomas, G.: Electrolyte and method for electrolytic deposition of gold–copper alloys. Eur. Pat. Appl. EP 1983077 A1 20081022 (2008)Google Scholar
  15. 15.
    Nancollas, G.H., Park, A.C.: Proton magnetic resonance studies on some metal complexes of methyliminodiacetic acid and (hydroxyethyl)-iminodiacetic acid. J. Phys. Chem. 71, 3678–3681 (1967)CrossRefGoogle Scholar
  16. 16.
    Szakacs, Z., Beni, S., Noszal, B.: Resolution of carboxylate protonation microequilibria of NTA, EDTA and related complexones. Talanta 74, 666–674 (2008)CrossRefGoogle Scholar
  17. 17.
    Letkeman, P., Martell, A.E.: Nuclear magnetic resonance and potentiometric protonation study of polyaminopolyacetic acids containing from two to six nitrogen atoms. Inorg. Chem. 18, 1284–1289 (1979)CrossRefGoogle Scholar
  18. 18.
    Martell, A.E., Smith, R.M., Motekaitis, R.J.: NIST Critically selected stability constants of metal complexes database, 8.0. Garthersburg, MD (2004)Google Scholar
  19. 19.
    Bretti, C., Cigala, R.M., De Stefano, C., Lando, G., Sammartano, S.: Thermodynamic solution properties of a biodegradable chelant (MGDA) and its interaction with the major constituents of natural fluids. Fluid Phase Equilib. 434, 63–73 (2017)CrossRefGoogle Scholar
  20. 20.
    Bretti, C., Cigala, R.M., De Stefano, C., Lando, G., Sammartano, S.: Understanding the bioavailability and sequestration of different metal cations in the presence of a biodegradable chelant S, S-EDDS in biological fluids and natural waters. Chemosphere 150, 341–356 (2016)CrossRefGoogle Scholar
  21. 21.
    Bretti, C., Majlesi, K., De Stefano, C., Sammartano, S.: Thermodynamic study on the protonation and complexation of GLDA with Ca2+ and Mg2+ at different ionic strengths and ionic media at 298.15 K. J. Chem. Eng. Data 61, 1895–1903 (2016)CrossRefGoogle Scholar
  22. 22.
    De Stefano, C., Sammartano, S., Mineo, P., Rigano, C.: In: Gianguzza, A., Pelizzetti, E., Sammartano, S. (eds.) Computer Tools for the Speciation of Natural Fluids. In Marine Chemistry—An Environmental Analytical Chemistry Approach, pp. 71–83. Kluwer Academic Publishers, Amsterdam (1997)Google Scholar
  23. 23.
    De Robertis, A., De Stefano, C., Sammartano, S., Rigano, C.: The determination of formation constants of weak complexes by potentiometric measurements: experimental procedures and calculation methods. Talanta 34, 933–938 (1987)CrossRefGoogle Scholar
  24. 24.
    Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions, 3rd edn. Reinhold Publishing Corporation, New York (1964)Google Scholar
  25. 25.
    Ciavatta, L.: The specific interaction theory in equilibrium analysis. Some empirical rules for estimating interaction coefficients of metal ion complexes. Ann. Chim. 80, 255–263 (1990)Google Scholar
  26. 26.
    Scatchard, G.: Concentrated solutions of strong electrolytes. Chem. Rev. 19, 309–327 (1936)CrossRefGoogle Scholar
  27. 27.
    Bronsted, J.N.: Studies on solubility. IV. The principle of the specific interaction of ions. J. Am. Chem. Soc. 44, 877–898 (1922)CrossRefGoogle Scholar
  28. 28.
    Ciavatta, L.: The specific interaction theory in the evaluating ionic equilibria. Ann. Chim. 70, 551–562 (1980)Google Scholar
  29. 29.
    Guggenheim, E.A., Turgeon, J.C.: Specific interaction of ions. Trans. Fraraday Soc. 51, 747–761 (1955)CrossRefGoogle Scholar
  30. 30.
    Pitzer, K.S.: Activity coefficients in electrolyte solutions. J. Phys. Chem. 77, 268–277 (1973)CrossRefGoogle Scholar
  31. 31.
    Pitzer, K.S.: Activity Coefficients in Electrolyte Solutions, 2nd edn. CRC Press, Boca Raton (1991)Google Scholar
  32. 32.
    Bretti, C., Foti, C., Porcino, N., Sammartano, S.: SIT parameters for 1:1 electrolytes and correlation with Pitzer coefficients. J. Solution Chem. 35, 1401–1415 (2006)CrossRefGoogle Scholar
  33. 33.
    Bretti, C., Cigala, R.M., De Stefano, C., Lando, G., Sammartano, S.: Potentiometric determination of some solution thermodynamic parameters of three hydroxypyrone derivates. Int. J. Electrochem. Sci. 8, 10621–10649 (2013)Google Scholar
  34. 34.
    Bretti, C., De Stefano, C., Foti, C., Sammartano, S.: Acid–base properties, solubility, activity coefficients and Na+ ion pair formation of complexons in NaCl(aq) at different ionic strengths (0 ≤ I ≤ 4.8 mol L−1). J. Solution Chem. 42, 1452–1471 (2013)CrossRefGoogle Scholar
  35. 35.
    Daniele, P.G., De Robertis, A., De Stefano, C., Sammartano, S., Rigano, C.: On the possibility of determining the thermodynamic parameters for the formation of weak complexes using a simple model for the dependence on ionic strength of activity coefficients: Na+, K+, and Ca2+ complexes of low molecular weight ligands in aqueous solution. J. Chem. Soc., Dalton Trans. 11, 2353–2361 (1985)CrossRefGoogle Scholar
  36. 36.
    Daniele, P.G., Foti, C., Gianguzza, A., Prenesti, E., Sammartano, S.: Weak alkali and alkaline earth metal complexes of low molecular weight ligands in aqueous solution. Coord. Chem. Rev. 252, 1093–1107 (2008)CrossRefGoogle Scholar
  37. 37.
    Frausto da Silva, J.J.R., Williams, R.J.P.: The Biological Elements: The Inorganic Chemistry of Life. Clarendon Press, Oxford (1991)Google Scholar
  38. 38.
    Pinto, I.S.S., Neto, I.F.F., Soares, H.M.V.M.: Biodegradable chelating agents for industrial, domestic, and agricultural applications—a review. Environ. Sci. Pollut. Res. 21, 11893–11906 (2014)CrossRefGoogle Scholar
  39. 39.
    Schwarzenbach, G.: Die komplexometrische titration. Angew. Chem. 67, 415 (1955)CrossRefGoogle Scholar
  40. 40.
    Kolondyska, D.: The effect of the novel complexing agent in removal of heavy metal ions from waters and wastewaters. Chem. Eng. J. 165, 835–845 (2010)CrossRefGoogle Scholar
  41. 41.
    BASF Technical Information; Ti/EVD 1418 e-Trilon® M types (2007)Google Scholar
  42. 42.
    Nippon Shokubai; Biodegradable chelating agent: HIDS (2017). http://www.shokubai.co.jp/en/products/functionality/hids.html

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed AmbientaliUniversità degli Studi di MessinaMessina (Vill. S. Agata)Italy
  3. 3.Private LaboratoryTehranIran

Personalised recommendations