Journal of Solution Chemistry

, Volume 47, Issue 3, pp 430–448 | Cite as

The Study of Solute–Solvent Interactions in 1-Butyl-3-Methylimidazolium Hexafluorophosphate + 2-Pyrrolidone from Volumetric, Acoustic, Optical and Spectral Properties

  • V. Srinivasa Rao
  • M. Srinivasa Reddy
  • K. Thomas S. S. Raju
  • B. L. Rani
  • B. Hari Babu
Article
  • 34 Downloads

Abstract

The density (ρ), speed of sound (u) and refractive index (nD) of [Bmim][PF6], 2-pyrrolidone and their binary mixtures were measured over the whole composition range as a function of temperature between (303.15 and 323.15) K at atmospheric pressure. Experimental values were used to calculate the excess molar volumes \( \left( {V_{m}^{\text{E}} } \right) \), excess partial molar volumes \( \left( {\overline{V}_{m}^{\text{E}} } \right) \), partial molar volumes at infinite dilution \( \left( {\overline{V}_{m}^{{{\text{E}},\infty }} } \right) \), excess values of isentropic compressibility \( \left( {\kappa_{S}^{\text{E}} } \right) \), free length \( \left( {L_{\text{f}}^{\text{E}} } \right) \) and speeds of sound \( \left( {u^{\text{E}} } \right) \) for the binary mixtures. The calculated properties are discussed in terms of molecular interactions between the components of the mixtures. The results reveal that interactions between unlike molecules take place, particularly through intermolecular hydrogen bond formation between the C2–H of [Bmim][PF6] and the carbonyl group of pyrrolidin-2-one. An excellent correlation between thermodynamic and IR spectroscopic measurements was observed. The observations were further supported by the Prigogine–Flory–Patterson (PFP) theory of excess molar volume.

Keywords

[Bmim][PF62-Pyrrolidone Density Speed of sound Refractive index Excess thermodynamic parameters 

Supplementary material

10953_2018_729_MOESM1_ESM.docx (640 kb)
Supplementary material 1 (DOCX 639 kb)

References

  1. 1.
    Greaves, T.L., Drummond, C.J.: Proticionic liquids: evolving structure–property relationships and expanding applications. Chem. Rev. 115, 11379–11448 (2015)CrossRefGoogle Scholar
  2. 2.
    Guo, F., Zhang, S., Wang, J., Teng, B., Zhang, T., Fan, M.: Synthesis and applications of ionic liquids in clean energy and environment: a review. Curr. Org. Chem. 19, 455–468 (2014)CrossRefGoogle Scholar
  3. 3.
    Shamsuri, A.A., Daik, R.: Applications of ionic liquids and their mixtures for preparation of advanced polymer blends and composites: a short review. Rev. Adv. Mat. Sci. 40, 45–59 (2015)Google Scholar
  4. 4.
    Comminges, C., Barhdadi, R., Laurent, M., Troupel, M.: Determination of viscosity, ionic conductivity, and diffusion coefficients in some binary systems: ionic liquids + molecular solvents. J. Chem. Eng. Data 51, 680–685 (2006)CrossRefGoogle Scholar
  5. 5.
    Zhang, P., Peng, L., Li, W.: Application of ionic liquid [bmim]PF6 as green plasticizer for poly(L-lactide). e-Polymers 172, 8 (2008)Google Scholar
  6. 6.
    Lin, J., Teng, Y., Lu, Y., Lu, S., Hao, X., Cheng, D.: Usage of hydrophobic ionic liquid [BMIM][PF6] for recovery of acid dye from wastewater and sequential application in Tussah silk dyeing clean. Soil Air Water 42, 799–803 (2014)CrossRefGoogle Scholar
  7. 7.
    Flieger, J.: Effect of ionic liquids as mobile-phase additives on chromatographic parameters of neuroleptic drugs in reversed-phase high-performance liquid chromatography. Anal. Lett. 42(11), 1632–1649 (2009)CrossRefGoogle Scholar
  8. 8.
    Zhao, H., Sanjay, M.: Applications of ionic liquids in organic synthesis. Aldrichimica Acta 35(3), 75–83 (2002)CrossRefGoogle Scholar
  9. 9.
    Han, D., Ho Row, K.: Recent applications of ionic liquids in separation technology. Molecules 15, 2405–2426 (2010)CrossRefGoogle Scholar
  10. 10.
    Markus, E., Anita, J.M., Alan, J.R.: Enzymatic catalysis of formation of Z-aspartame in ionic liquid—an alternative to enzymatic catalysis in organic solvents. Biotechnol. Prog. 16, 1129–1131 (2000)CrossRefGoogle Scholar
  11. 11.
    Mehta, S.K., Ram, G., Bhasin, K.K.: Effect of placement of hydroxyl groups in isomeric butanediol on the behaviour of thermophysical and spectroscopic properties of pyrrolidin-2-one. J. Chem. Thermodyn. 37, 791–801 (2005)CrossRefGoogle Scholar
  12. 12.
    Garcia, B., Alcalde, R., Leal, J.M., Matos, J.S.: Solute–solvent interactions in amide–water mixed solvents. J. Phys. Chem. 101, 7991–7997 (1997)CrossRefGoogle Scholar
  13. 13.
    Geng, Y., Wang, T., Yu, D., Peng, C., Liu, H., Hu, Y.: Densities and viscosities of the ionic liquid [C4mim][PF6]–N, N-dimethylformamide binary mixtures at 293.15 to 318.15 K. Chin. J. Chem. Eng. 16, 256–262 (2008)CrossRefGoogle Scholar
  14. 14.
    Fan, W., Zhou, Q., Sun, J., Zhang, S.: Density, excess molar volume, and viscosity for the methyl methacrylate-1-butyl-3methylimidazolium hexafluorophosphate ionic liquid binary system at atmospheric pressure. J. Chem. Eng. Data 54, 2307–2311 (2009)CrossRefGoogle Scholar
  15. 15.
    Zhu, A., Wang, J., Han, L., Fan, M.: Measurements and correlation of viscosities and conductivities for the mixtures of imidazolium ionic liquids with molecular solutes. Chem. Eng. J. 147, 27–33 (2009)CrossRefGoogle Scholar
  16. 16.
    Taghi Zafarani-Moattar, M., Majdan-Cegincara, R.: Viscosity, density, speed of sound, and refractive index of binary mixtures of organic solvent + ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate at 298.15 K. J. Chem. Eng. Data 52, 2359–2364 (2007)CrossRefGoogle Scholar
  17. 17.
    Qiao, Y., Fangyou, Y., Xia, S., Shen, Y., Peisheng, M.: Densities and viscosities of [Bmim][PF6] and binary dystems [Bmim][PF6]–ethanol, [Bmim][PF6]–benzene at several temperatures and pressures: determined by the falling-ball method. J. Chem. Eng. Data 56, 2379–2385 (2011)CrossRefGoogle Scholar
  18. 18.
    Srinivasa Krishna, K.T., Raju, K.T.S.S., Gowrisankar, M., Anil, K.N., Munibhadrayya, B.: Volumetric, ultrasonic and spectroscopic studies of molecular interactions in binary mixtures of 1-butyl-3-methylimidazolium hexafluorophosphate with 2-propoxyethanol at temperatures from 298.15 to 323.15. J. Mol. Liquids 216, 484–495 (2016)CrossRefGoogle Scholar
  19. 19.
    Armarego, W.L., Chai, C.L.L.: Purification of Laboratory Chemicals. Butterworth-Heinemann publisher, Oxford (2013)Google Scholar
  20. 20.
    Scholz, E.: Karl Fisher Titration. Springer, Berlin (1984)Google Scholar
  21. 21.
    Costa, A.J., Esperanca, I.M., Marrucho, J.M., Rebelo, L.P.N.: Densities and viscosities of 1-ethyl-3-methylimidazolium n-alkyl sulfates. J. Chem. Eng. Data 56, 3433–3441 (2011)CrossRefGoogle Scholar
  22. 22.
    Pereiro, A.B., Legido, J.L., Rodriguez, A.: Physical properties of ionic liquids based on 1-alkyl-3-methylimidazolium cation and hexafluorophosphate as anion and temperature dependence. J. Chem. Thermodyn. 39, 1168–1175 (2007)CrossRefGoogle Scholar
  23. 23.
    Troncoso, J., Cerdeiriña, C.A., Sanmamed, Y.A., Romani, L., Lui Rebelo, L.P.N.: Thermodynamic properties of imidazolium-based ionic liquids: densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2]. J. Chem. Eng. Data 51, 1856–1859 (2006)CrossRefGoogle Scholar
  24. 24.
    Reid, R.C., Prausnitz, J.M., Poling, B.E.: The Properties of Gases and Liquids, 4th edn, p. 139. McGraw Hill Inc, New York (1987)Google Scholar
  25. 25.
    Srinivasa Krishnaa, T., Anil, K.N., Chentilnathc, S., Punyaseshadud, D., Munibhadrayya, B.: Densities, ultrasounds, refractive indices, excess and partial molar properties of binary mixtures of imidazolium based ionic liquid with pyrrolidin-2-one at temperatures from 298.15 L to 323.15 K. J. Chem. Eng. (2016).  https://doi.org/10.1016/j.jct.2016.05.021 Google Scholar
  26. 26.
    García, B., Hoyuelos, F.J., Alcalde, R., Leal, J.M.: Molar excess volumes of binary liquid mixtures: 2-pyrrolidinone with C6–C10 n-alkanols. Can. J. Chem. 74, 121–127 (1996)CrossRefGoogle Scholar
  27. 27.
    Reddy, M.S., Md Nayeem, S., Soumini, C., Raju, K.T.S.S., Babu, B.H.: Study of molecular interactions in binary liquid mixtures of [Emim][BF4] with 2-methoxyethanol using thermo acoustic, volumetric and optical properties. Thermochim. Acta 630, 37–39 (2016)CrossRefGoogle Scholar
  28. 28.
    Reddy, M.S., Raju, K.T.S.S., Rao, A.S., Sharmila, N., Babu, B.H.: Study of thermophysical properties of the binary mixtures of ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate and 2-propoxyethanol from T = (298.15 to 328.15) K at atmospheric pressure. J. Chem. Thermodyn. 101, 139–149 (2016)CrossRefGoogle Scholar
  29. 29.
    Reddy, M.S., Md Nayeem, S., Raju, K.T.S.S., Babu, B.H.: The study of solute–solvent interactions in 1-ethyl-3-methylimidazolium tetrafluoroborate + 2-ethoxyethanol from density, speed of sound, and refractive index measurements. J. Therm. Anal. Calorim. 124, 959–971 (2016)CrossRefGoogle Scholar
  30. 30.
    Ali, A., Nabi, F., Tariq, M.: Volumetric, viscometric, ultrasonic, and refractive index properties of liquid mixtures of benzene with industrially important monomers at different temperatures. Int. J. Thermophys. 30, 464–474 (2009)CrossRefGoogle Scholar
  31. 31.
    Reddy, M.S., Raju, K.T.S.S., Md Nayeem, S., Khan, I., Krishna, K.B.M., Babu, B.H.: Excess thermodynamic properties for binary mixtures of ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate and 2-methoxyethanol from T = (298.15 to 328.15) K at atmospheric pressure. J. Solution Chem. 45, 675–701 (2016)CrossRefGoogle Scholar
  32. 32.
    Roth, C., Appelhagen, A., Jobst, N., Ludwig, R.: Microheterogeneities in ionic-liquid–methanol solutions studied by FTIR spectroscopy, DFT calculations and molecular dynamics simulations. Chem. Phys. Chem. 13, 1708–1717 (2012)CrossRefGoogle Scholar
  33. 33.
    Aggarwal, A., Lancaster, N.L., Sethi, A.R., Welton, T.: The role of hydrogen bonding in controlling the selectivity of Diels–Alder reactions in room-temperature ionic liquids. Green Chem. 4, 517–520 (2002)CrossRefGoogle Scholar
  34. 34.
    Znamenskiy, V., Kobrak, M.N.: Molecular dynamics study of polarity in room-temperature ionic liquids. J. Phys. Chem. B 108, 1072–1079 (2004)CrossRefGoogle Scholar
  35. 35.
    Dhumal, N.R., Kim, H.J., Kiefer, J.:Electronic structure and normal vibrations of the 1-ethyl-3-methylimidazolium ethyl sulfate ion pair. J. Phys. Chem. A 115, 3551–3558 (2011)CrossRefGoogle Scholar
  36. 36.
    Lassegues, J.C., Grondin, J., Cavagnat, D., Johansson, P.: New interpretation of the CH stretching vibrations in imidazolium-based ionic liquids. J. Phys. Chem. A 113, 6419–6421 (2009)CrossRefGoogle Scholar
  37. 37.
    Lassegues, J.C., Grondin, J., Cavagnat, D., Johansson, P.: Reply to the comment on ‘New interpretation of the CH stretching vibrations in imidazolium-based ionic liquids’. J. Phys. Chem. A 114, 687–688 (2009)CrossRefGoogle Scholar
  38. 38.
    Grondin, J., Lassegues, J.C., Cavagnat, D., Buffeteau, T., Johansson, P., Holomb, R.: Revisited vibrational assignments of imidazolium-based ionic liquids. J. Raman Spectrosc. 42, 733–743 (2011)CrossRefGoogle Scholar
  39. 39.
    Maria, J.D.V., Rafael, A., Santiago, A.: Pyrrolidone derivatives in water solution: an experimental and theoretical perspective. Ind. Eng. Chem. Res. 48, 1036–1050 (2009)CrossRefGoogle Scholar
  40. 40.
    Vercher, E., Llopis, F.J., Gonzalez-Alfaro, M.V., Andreu, A.M.: Density, speed of sound, and refractive index of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate with acetone, methyl acetate, and ethyl acetate at temperatures from (278.15 to 328.15) K. J. Chem. Eng. Data 55, 1377–1388 (2010)CrossRefGoogle Scholar
  41. 41.
    Patterson, D., Delmas, G.: Corresponding states theories and liquid models. Discuss. Faraday Soc. 49, 98–105 (1970)CrossRefGoogle Scholar
  42. 42.
    Torres, R.B., Ortolan, M.I., Volpe, P.L.O.: Volumetric properties of binary mixtures of ethers and acetonitrile: experimental results and application of the Prigogine–Flory–Patterson theory. J. Chem. Thermodyn. 40, 442–459 (2008)CrossRefGoogle Scholar
  43. 43.
    Flory, P.J.: Statistical thermodynamics of liquid mixtures. J. Am. Chem. Soc. 87, 1833–1838 (1965)CrossRefGoogle Scholar
  44. 44.
    Abe, A., Flory, P.J.: The thermodynamic properties of mixtures of small, nonpolar molecules. J. Am. Chem. Soc. 87, 1838–1846 (1965)CrossRefGoogle Scholar
  45. 45.
    Vaid, Z.S., More, U.U., Oswal, S.B., Malek, N.I.: Experimental and theoretical excess molar properties of imidazolium based ionic liquids with isomers of butanol. Thermochim. Acta 634, 38–47 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. Srinivasa Rao
    • 1
    • 5
  • M. Srinivasa Reddy
    • 2
  • K. Thomas S. S. Raju
    • 3
  • B. L. Rani
    • 4
  • B. Hari Babu
    • 5
  1. 1.Department of ChemistrySRR & CVR Govt. Degree CollegeVijayawadaIndia
  2. 2.Department of ChemistryTRR Govt. Degree CollegeKandukurIndia
  3. 3.Department of ChemistryAndhra Loyola CollegeVijayawadaIndia
  4. 4.Department of ChemistryChalapathi Institute of Engineering and TechnologyGunturIndia
  5. 5.Department of ChemistryAcharya Nagarjuna UniversityNagarjunanagarIndia

Personalised recommendations