Skip to main content
Log in

Complexation Equilibria of Indium in Aqueous Chloride, Sulfate and Nitrate Solutions: An Electrochemical Investigation

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical methods have been used to determine the speciation and stability constants of various aqueous indium complexes. Qualitative behavior is observed using UV–Vis spectroscopy and cyclic voltammetry. Equilibrium constants are determined using differential pulse voltammetry. In a titration where the titrant and sample contain equal concentrations of acid and In3+ ions and equivalent concentrations of ligand and supporting electrolyte anions, respectively, small changes in ligand concentration can be made quickly and accurately while maintaining the overall ionic strength. From the change in the half-wave reduction potential as a function of ligand concentration, the coordination number and the stability constants of sulfate, chloride and nitrate complexes were determined. We also highlight the difficulties finding a supporting electrolyte that does not interact with the In3+ ion. On the one hand, it was not possible to prevent the slow formation of chloride in perchlorate electrolytes containing indium. On the other hand, we show that, at concentrations of nitrate anions commonly used in such experiments, nitrate complexes form. In the light of these new findings, previously published stability constants of indium using nitrate-based supporting electrolytes should be used cautiously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kim, H., Gilmore, C.M., Piqué, A., Horwitz, J.S., Mattoussi, H., Murata, H., Kafafi, Z.H., Chrisey, D.B.: Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. J. Appl. Phys. 86, 6451–6461 (1999)

    Article  CAS  Google Scholar 

  2. George, M.W.: U.S. Geological Survey Minerals Yearbook 2003, 36.1 (2004)

  3. Downs, A.J.: Chemistry of Aluminium, Indium, and Thallium. Springer, Gallium (1993)

    Book  Google Scholar 

  4. Alfantazi, A.M., Moskalyk, R.R.: Processing of indium: a review. Miner. Eng. 16, 687–694 (2003)

    Article  CAS  Google Scholar 

  5. Liu, H.Y., Avrutin, V., Izyumskaya, N., Ozgur, U., Morkoc, H.: Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices Microstruct. 48, 458–484 (2010)

    Article  CAS  Google Scholar 

  6. Angerer, G., Erdmann, L., Marscheider-Weidemann, F., Scharp, M., Lüllmann, A., Handke, V., Marwede, M.: Rohstoffe für Zukunftstechnologien. Fraunhofer. IRB Verlag, Stuttgart (2009)

    Google Scholar 

  7. White, S.J.O., Hemond, H.F.: The anthrobiogeochemical cycle of indium: a review of the natural and anthropogenic cycling of indium in the environment. Crit. Rev. Env. Sci. Tech. 42, 155–186 (2012)

    Article  CAS  Google Scholar 

  8. Schwarz-Schampera, U., Herzig, P.: Indium: Geology, Mineralogy and Economics. Springer, New York (2002)

    Book  Google Scholar 

  9. Hoffmann, J.E.: Recovering precious metals from electronic scrap. J. Miner. Met. Mater. Soc. 44, 43–48 (1992)

    Article  CAS  Google Scholar 

  10. Graeser, S.: Minor elements in sphalerite and galena from Binnatal. Contrib. Mineral. Petrol. 24, 156–162 (1969)

    Article  CAS  Google Scholar 

  11. Grafenauer, S., Gorenc, B., Marinkovic, V., Strmole, D., Maksimovic, Z.: Physical properties and the chemical composition of sphalerites from Yugoslavia. Miner. Deposita 4, 275–282 (1969)

    Article  CAS  Google Scholar 

  12. Briskey, J.A.: Indium in Zinc–Lead and Other Mineral Deposits—A Reconnaissance Survey of 1118 Indium Analyses Published Before 1985. USGS Survey (2005)

  13. Lee, M.S., Oh, Y.J.: Analysis of ionic equilibria and electrowinning of indium from chloride solutions. Scand. J. Metall. 33, 279–285 (2004)

    Article  CAS  Google Scholar 

  14. Han, K., Kondoju, S., Park, K., Kang, H.: Recovery of indium from indium/tin oxides scrap by chemical precipitation. Geosyst. Eng. 5, 93–98 (2002)

    Article  CAS  Google Scholar 

  15. Fortes, M.C.B., Martins, A.H., Benedetto, J.S.: Indium adsorption onto ion exchange polymeric resins. Mineral. Eng. 16, 659–663 (2003)

    Article  CAS  Google Scholar 

  16. Biedermann, G.: Studies on the hydrolysis of metal ions Part 14. The hydrolysis of the indium(III) ion, In3+. Arkiv Kemi. 9, 277–291 (1956)

    Google Scholar 

  17. Biryuk, E.A., Nazarenko, V.A., Ravitskaya, R.V.: Spectrophotometric determination of the hydrolysis constants of indium ions. Russ. J. Inorg. Chem. 14, 503–506 (1969)

    Google Scholar 

  18. Ferri, D.: Complex formation equilibriums between indium(III) and chloride ions. Acta Chem. Scand. 26, 733–746 (1972)

    Article  CAS  Google Scholar 

  19. Rossotti, F.J.C., Rossotti, H.: Studies on the hydrolysis of metal ions Part 15. Partition equilibria in the system 114In/TTA/benzene. Acta. Chem. Scand. 10, 779–792 (1956)

  20. Sundén, N.: On the complex chemistry of the indium ion Part II. The chloride, bromide and sulfate systems. Svensk. Kem. Tidskr. 66, 20–33 (1954)

    Google Scholar 

  21. Hattox, E.M., De Vries, T.: The thermodynamics of aqueous indium sulfate solutions. J. Am. Chem. Soc. 58, 2126–2129 (1936)

    Article  CAS  Google Scholar 

  22. Tunaboylu, K., Schwarzenbach, G.: Die löslichkeit von indiumsulfid. Chimia 24, 424–427 (1970)

    CAS  Google Scholar 

  23. Licht, S.: Aqueous solubilities, solubility products and standard oxidation–reduction potentials of the metal sulphides. J. Electrochem. Soc. 135, 2971–2975 (1988)

    Article  CAS  Google Scholar 

  24. IUPAC SC-Database. IUPAC and Academic Software. Version 5.3 (2003)

  25. Biedermann, G., Li, N., Yu, J.: Studies on the hydrolysis of metal ions Part 34. The hydrolysis of the indium(III) ion in 3 M Cl medium. Acta Chem. Scand. 15, 555–564 (1961)

    Article  CAS  Google Scholar 

  26. Moeller, T.: Contributions to the chemistry of indium. Hydrolysis constants for indium tribromide and triiodide solutions. J. Am. Chem. Soc. 64, 953–954 (1942)

    Article  CAS  Google Scholar 

  27. Hepler, L.G., Hugus, Z.Z.: Hydrolysis and halide complexing of indium(III). J. Am. Chem. Soc. 74, 6115–6116 (1952)

    Article  CAS  Google Scholar 

  28. Nanda, R.K., Aditya, S.: Studies on ion association equilibria. Spectrophotometric determination of the thermodynamic instability constants of \( {\text{AlSO}}_{4}^{ + } \), \( {\text{GaSO}}_{4}^{ + } \) and \( {\text{InSO}}_{4}^{ + } \). Z. Physik. Chem. 35, 139–145 (1962)

  29. Izatt, R.M.; Eatough, D., Christensen, J.J., Bartholomew, C.H.: Calorimetrically determined log K, ΔH° and ΔS° values for the interaction of sulfate ion with several bi- and ter-valent metal ions. J. Chem. Soc. A 47–53 (1969)

  30. Deichman, E.N., Rodicheva, G.V., Krysina, L.S.: Reaction of indium sulfate with sodium sulfate in aqueous solution. Russ. J. Inorg. Chem. 11, 1199–1201 (1966)

    Google Scholar 

  31. Sundén, N.: On the complex chemistry of the indium ion. Part IV. An investigation of the chloride and sulfate systems by ion exchangers. Svensk Kem. Tidskr. 66, 173–178 (1954)

    Google Scholar 

  32. Carleson, B.G., Irving, H.: The stability constants of the indium halides. J. Chem. Soc. 4390–4399 (1954)

  33. Sundén, N.: On the complex chemistry of the indium ion. Part V. The chloride, bromide and sulfate systems from extraction equilibria. Svensk Kem. Tidskr. 66, 345–350 (1954)

    Google Scholar 

  34. Martell, A.E., Motekaitis, R.J.: Potentiometry revisited: the determination of thermodynamic equilibria in complex multicomponent systems. Coord. Chem. Rev. 100, 323–361 (1990)

    Article  CAS  Google Scholar 

  35. Zittel, H.J., Miller, F.J.: A glassy-carbon electrode for voltammetry. Anal. Chem. 37, 200–203 (1965)

    Article  CAS  Google Scholar 

  36. Bard, A.J., Faulkner, L.R.: Electrochemical Methods. Wiley, New York (1980)

    Google Scholar 

  37. Ligane, J.: Thermodynamic significance of polarographic half-wave potentials of simple metal ions at the dropping mercury electrode. J. Am. Chem. Soc. 61, 2099–2103 (1939)

    Article  Google Scholar 

  38. Stackelberg, M., Freyhold, H.: Polarographische untersuchungen am komplexen in wässriger lösung. Z. Elektrochem. 46, 120–129 (1940)

    Google Scholar 

  39. DeFord, D., Hume, D.: The determination of consecutive formation constants of complex ions from polarographic data. J. Am. Chem. Soc. 73, 5321–5322 (1951)

    Article  CAS  Google Scholar 

  40. Schufle, J., Stubbs, M., Witman, R.: A study of indium(III) chloride complexes by polarographic methods. J. Am. Chem. Soc. 73, 1013–1015 (1951)

    Article  CAS  Google Scholar 

  41. Cozzi, D., Vivarelli, S.: Beitrag zur chemie des indiums. Z. Elektrochem. 57, 408–416 (1953)

    CAS  Google Scholar 

  42. Kondziela, P., Biernat, J.: Determination of stability constants of indium halogenide complexes by polarography. J. Electroanal. Chem. Interfacial Electrochem. 61, 281–288 (1975)

    Article  CAS  Google Scholar 

  43. Heath, G.A., Hefter, G.: The use of differential pulse polarography for the determination of stability constants. J. Electroanal. Chem. 84, 295–302 (1977)

    Article  CAS  Google Scholar 

  44. Birke, R.L., Kim, M.-H., Strassfeld, M.: Diagnosis of reversible, quasi-reversible and irreversible electrode processes with differential pulse polarography. Anal. Chem. 53, 852–856 (1981)

    Article  CAS  Google Scholar 

  45. Parry, E.P., Osteryoung, R.A.: Evaluation of analytical pulse polarography. Anal. Chem. 37, 1634–1637 (1965)

    Article  CAS  Google Scholar 

  46. Dillard, J.W., Hanck, K.W.: Digital simulation of differential pulse polarography. Anal. Chem. 48, 218–222 (1976)

    Article  CAS  Google Scholar 

  47. Parkhurst, D.L., Appelo, C.A.J.: Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Techniques and Methods, book 6, Chap. A43 (2013)

  48. Seward, T.M., Henderson, C.M.B., Charnock, J.M.: Indium(III) chloride complexing and solvation in hydrothermal solutions to 350 °C: an EXAFS study. Chem. Geo. 167, 117–127 (2000)

    Article  CAS  Google Scholar 

  49. Piercy, R., Hampson, N.: The electrochemistry of indium. J. App. Electrochem. 5, 1–15 (1975)

    Article  CAS  Google Scholar 

  50. Bard, A.J., Parsons, R., Jordan, J.: Standard Potentials in Aqueous Solution. Marcel Dekker, New York (1985)

  51. Tuck, D.G.: Critical survey of stability constants of complexes of indium. Pure Appl. Chem. 55, 1477–1528 (1983)

    Article  CAS  Google Scholar 

  52. Fridman, Ya.D., Sorochan, R.I., Dolgashova, N.V: Stability of mixed halides of thallium and indium in solutions. Zh. Neorg. Khim. 7, 2127–2133 (1962)

  53. Mikhailova, D.M., Nacheva, R.N., Mikhailova, V.T.: Stability constants of chloride complexes of indium in the presence of alkali metal nitrates as the supporting electrolyte. Radiokhimiya 11, 241–245 (1969)

    Google Scholar 

  54. Schischkova, L.G.: Komplexbildung von indium(III) in wässrigen und wässrigorganischen lösungen verschiedener sulfate. Comptes Rendus Acad. Bulgare Sci. 31, 995–998 (1978)

    Google Scholar 

  55. Ricciu, A., Secco, F., Venturini, M., Garcia, B., Leal, J.M.: Kinetics and equilibria of the interaction of indium(III) with pyrocathecol violet by relaxation spectrometry. J. Phys. Chem. A 104, 7036–7043 (2000)

    Article  CAS  Google Scholar 

  56. Tur’yan, Ya.I., Strizhov, N.K.: Polarographic determination of the instability constant of the sulfato-complex of indium(III). Russ. J. Inorg. Chem. 17, 1066–1067 (1972)

  57. Aziz, A., Lyle, S.J.: Partition studies of chemical equilibria in indium(III) fluoride and sulfate systems. J. Inorg. Nucl. Chem. 30, 3223–3229 (1968)

    Article  CAS  Google Scholar 

  58. Hasegawa, Y., Shimada, T., Niitsu, M.: Solvent extraction of 3B group metal ions from hydrochloric acid with trioctylphosphine oxide. J. Inorg. Nucl. Chem. 42, 1487–1489 (1980)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Dr. Erich-Krüger-Stiftung and the Biohydrometallurgical Center Freiberg for funding and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gero Frisch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashworth, C., Frisch, G. Complexation Equilibria of Indium in Aqueous Chloride, Sulfate and Nitrate Solutions: An Electrochemical Investigation. J Solution Chem 46, 1928–1940 (2017). https://doi.org/10.1007/s10953-017-0675-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-017-0675-y

Keywords

Navigation