Advertisement

The Complexity of Parallel Machine Scheduling of Unit-Processing-Time Jobs under Level-Order Precedence Constraints

  • Tianyu WangEmail author
  • Odile Bellenguez-Morineau
Article
  • 55 Downloads

Abstract

In this paper, we prove that parallel machine scheduling problems where jobs have unit processing time and level-order precedence constraints are NP-complete, while minimizing the makespan or the total completion time. These problems are NP-complete even when preemption is allowed. We then adapt the proof to other open problems with out-tree or opposing-forests precedence constraints.

Keywords

Parallel machine scheduling Level-order Precedence constraints 

Notes

Acknowledgements

This work was supported by the China Scholarship Council (Grant No. 201404490037).

References

  1. Baptiste, P., & Timkovsky, V. G. (2001). On preemption redundancy in scheduling unit processing time jobs on two parallel machines. Operations Research Letters, 28(5), 205–212.CrossRefGoogle Scholar
  2. Brucker, P., Garey, M. R., & Johnson, D. S. (1977). Scheduling equal-length tasks under treelike precedence constraints to minimize maximum lateness. Mathematics of Operations Research, 2(3), 275–284.CrossRefGoogle Scholar
  3. Brucker, P., Heitmann, S., & Hurink, J. (2003). How useful are preemptive schedules? Operations Research Letters, 31(2), 129–136.CrossRefGoogle Scholar
  4. Dolev, D., & Warmuth, M. K. (1985). Profile scheduling of opposing forests and level orders. SIAM Journal on Algebraic Discrete Methods, 6(4), 665–687.CrossRefGoogle Scholar
  5. Garey, M. R., & Johnson, D. S. (2002). Computers and intractability (Vol. 29). New York: WH Freeman.Google Scholar
  6. Garey, M. R., Johnson, D. S., Tarjan, R. E., & Yannakakis, M. (1983). Scheduling opposing forests. SIAM Journal on Algebraic Discrete Methods, 4(1), 72–93.CrossRefGoogle Scholar
  7. Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. H. G. R. (1979). Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5, 287–326.CrossRefGoogle Scholar
  8. Hu, T. C. (1961). Parallel sequencing and assembly line problems. Operations Research, 9(6), 841–848.CrossRefGoogle Scholar
  9. Pinedo, M. (2012). Scheduling. Berlin: Springer.CrossRefGoogle Scholar
  10. Prot, D., & Bellenguez-Morineau, O. (2018). A survey on how the structure of precedence constraints may change the complexity class of scheduling problems. Journal of Scheduling, 21(1), 3–16.CrossRefGoogle Scholar
  11. Van Bevern, R., Bredereck, R., Bulteau, L., Komusiewicz, C., Talmon, N., & Woeginger, G.J. (2016). Precedence-constrained scheduling problems parameterized by partial order width. In International conference on discrete optimization and operations research (pp. 105–120). Springer.Google Scholar
  12. Wang, T., & Bellenguez-Morineau, O. (2017). Complexity of parallel scheduling problem with equal processing time and particular precedence constraints while minimizing the mean flow time. Journal of Scheduling. ref: hal-01800804 (submitted).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut Mines-Télécom Atlantique, LS2N, UMR CNRS 6004Nantes Cedex 3France

Personalised recommendations