Advertisement

Journal of Scheduling

, Volume 21, Issue 5, pp 545–563 | Cite as

A new algorithm based on evolutionary computation for hierarchically coupled constraint optimization: methodology and application to assembly job-shop scheduling

  • Pan Zou
  • Manik Rajora
  • Steven Y. Liang
Article

Abstract

Hierarchically coupled constraint optimization (HCCO) problems are omnipresent, both in theoretical problems and in real-life scenarios; however, there is no clear definition to identify these problems. Numerous techniques have been developed for some typical HCCO problems, such as assembly job-shop scheduling problems (AJSSPs); however, these techniques are not universally applicable to all HCCO problems. In this paper, an abstract definition and common principles amongst different HCCO problems are first established. Next, based on the definitions and principles, a new optimization algorithm based on evolutionary computation is developed for HCCO. The new optimization algorithm has three key new features: a new initial solution generator, a level barrier-based crossover operator, and a level barrier-based mutation operator. In the initial solution generator, a partial solution is created in the first step that satisfies the lowest level hierarchically coupled constraint (HCC) and each consecutive step afterwards adds on to the partial solution to satisfy the next higher level of HCC. In the level barrier-based operators, the operations are only performed between genes satisfying the same level of HCCs to ensure feasibility of the new solutions. The developed optimization algorithm is used to solve a variety of AJSSPs and the results obtained using the proposed algorithm are compared to other methods used to solve AJSSPs.

Keywords

Evolutionary computation Hierarchically coupled constraint optimization Multi-chromosome Assembly job-shop scheduling 

List of symbols

\({{\varvec{a}}}_{{\varvec{n}}}\)

\(n{\hbox {th}}\) independent variable

\({{\varvec{x}}}({{\varvec{a}}}_{{\varvec{i}}})\)

The frequency of occurrence of the variable \(x(a_i)\)

\({{\varvec{b}}}_{{{\varvec{m}}}_{{\varvec{1}}}}^{\left( \mathbf{1} \right) }\)

\(m_1\)-dependent variable belonging to the \(1{\mathrm{st}}\) level

\({{\varvec{C}}}_{{{\varvec{a}}}_\mathbf{1}}\)

Constraint on the independent variable \(a_1\)

\({{\varvec{C}}}_{{{\varvec{b}}}_\mathbf{1}}\)

Constraint on the dependent \(b_1\)

\({{\varvec{l}}}_{{{\varvec{a}}}_{{\varvec{i}}}}\)

Location of variable \(a_i\) in the chromosome

\({{\varvec{l}}}_{{{\varvec{b}}}_\mathbf{1}^{\left( \mathbf{1} \right) }}\)

Location of variable \(b_1^{\left( 1 \right) }\) in the chromosome

\({{\varvec{G}}}_{{{\varvec{j}}}_\mathbf{1}}^{\left( \mathbf{0} \right) }\)

\(j_1 \; 0{\mathrm{th}}\)-level gene

\({{\varvec{w}}}_{{{\varvec{j}}}_\mathbf{1}, {{\varvec{i}}}}^{\left( \mathbf{0} \right) }\)

Weight values of the independent variable \(a_i\) for gene \(G_{j_1 }^{\left( 0 \right) }\)

\({{\varvec{w}}}_{{{\varvec{j}}}_\mathbf{2}, {{\varvec{j}}}_\mathbf{1}}^{\left( \mathbf{1} \right) }\)

Weight values of the \(1{\mathrm{st}}\)-level dependent variable \(b_{j_1 }^{\left( 1 \right) }\) for gene \(G_{j_1 }^{\left( 1 \right) }\)

\({{\varvec{w}}}_{{\varvec{x}}}\)

Crossover weight values

\({{\varvec{w}}}_{{\varvec{x}}} \left( {{{\varvec{r}}}_\mathbf{0} } \right) \)

Crossover weight value for the \(r_0{\hbox {th}}\) level

\({{\varvec{w}}}_{{\varvec{m}}}\)

Mutation-level weight values

\({{\varvec{w}}}_{{\varvec{m}}} \left( {{{\varvec{r}}}_\mathbf{0}} \right) \)

Mutation weight value for the \(r_0{\hbox {th}}\) level

\({{\varvec{x}}}_{{\varvec{p}}}\)

Random integer between 1 and \(m_{r_0}\)

\({{\varvec{CM}}}^{\left( \mathbf{0} \right) }\)

Mutation candidates for the \(0{\mathrm{th}}\) level

\({{\varvec{CM}}}\)

Mutation candidates for all levels

\({{\varvec{\hbox {CG}}}}_{{{\varvec{b}}}_{{{\varvec{m}}}_{\left( {{{\varvec{r}}}_\mathbf{0} +\mathbf{1}} \right) } }^{\left( {{{\varvec{r}}}_\mathbf{0} +\mathbf{1}} \right) } }^{\left( {{{\varvec{r}}}_\mathbf{0}} \right) }\)

A vector containing gene groups belonging to the \(r_{o}\) level that constrains the \(b_{m_{\left( {r_0 +1} \right) } }^{\left( {r_0 +1} \right) }\) dependent variable and has the length c

\({{\varvec{P}}}_{{{\varvec{rm}}}}\)

Mutation probability (between 0 and 1)

\({{\varvec{P}}}\)

Random integer between 1 and \(m_{\left( {r_0 +1} \right) }\)

\({{\varvec{Q}}}\)

Random integer between 1 and number of genes in c

\({{\varvec{R}}}\)

Random integer between 2 and the number of genes in \({\hbox {CG}}_{b_{m_{\left( P \right) } }^{\left( {r_0 +1} \right) } }^{\left( {r_0 } \right) } \left( Q \right) -R\)

\({{\varvec{n}}}\)

Number of genes in \({\hbox {CG}}_{b_{m_{\left( P \right) } }^{\left( {r_0 -1} \right) } }^{\left( {r_0 } \right) } \left( Q \right) -R\)

References

  1. Coello, C. A. C. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, 191(11), 1245–1287.CrossRefGoogle Scholar
  2. Watanabe, K., & Hashem, M. M. A. (2004). Evolutionary optimization of constrained problems. In K. Watanabe & M. M. A. Hashem (Eds.), Evolutionary computations (pp. 53–64). Berlin: Springer.CrossRefGoogle Scholar
  3. Ali, M. M., Golalikhani, M., & Zhuang, J. (2014). A computational study on different penalty approaches for solving constrained global optimization problems with the electromagnetism-like method. Optimization, 63(3), 403–419.CrossRefGoogle Scholar
  4. Snyman, J. A., Stander, N., & Roux, W. J. (1994). A dynamic penalty function method for the solution of structural optimization problems. Applied Mathematical Modelling, 18(8), 453–460.CrossRefGoogle Scholar
  5. Koziel, S., & Michalewicz, Z. (1999). Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization. Evolutionary Computation, 7(1), 19–44.CrossRefGoogle Scholar
  6. Monson, C. K., & Seppi, K. D. (2005). Linear equality constraints and homomorphous mappings in PSO. In 2005 IEEE congress on evolutionary computation (Vol. 1, pp. 73–80).Google Scholar
  7. Michalewicz, Z., & Janikow, C. Z. (1996). GENOCOP: A genetic algorithm for numerical optimization problems with linear constraints. Communications of the ACM, 39(12es), 175.CrossRefGoogle Scholar
  8. Chootinan, P., & Chen, A. (2006). Constraint handling in genetic algorithms using a gradient-based repair method. Computers & Operations Research, 33(8), 2263–2281.CrossRefGoogle Scholar
  9. Pal, K., Saha, C., Das, S., & Coello, C. A. C. (2013). Dynamic constrained optimization with offspring repair based gravitational search algorithm. In 2013 IEEE congress on evolutionary computation (pp. 2414–2421).Google Scholar
  10. Michalewicz, Z., & Nazhiyath, G. (1995). Genocop III: A co-evolutionary algorithm for numerical optimization problems with nonlinear constraints. In IEEE international conference on evolutionary computation, 1995 (Vol. 2, pp. 647–651).Google Scholar
  11. Ameca-Alducin, M. Y., Mezura-Montes, E., & Cruz-Ramírez, N. (2015). A repair method for differential evolution with combined variants to solve dynamic constrained optimization problems. In Proceedings of the 2015 annual conference on genetic and evolutionary computation (pp. 241–248).Google Scholar
  12. Deb, K. (2000). An efficient constraint handling method for genetic algorithms. Computer Methods in Applied Mechanics and Engineering, 186(2), 311–338.CrossRefGoogle Scholar
  13. Ma, H., & Simon, D. (2011). Blended biogeography-based optimization for constrained optimization. Engineering Applications of Artificial Intelligence, 24(3), 517–525.CrossRefGoogle Scholar
  14. Chen, H., Zhou, Y., Guo, P., Ouyang, X., He, S., & Zheng, H. (2013). A hybrid invasive weed optimization with feasibility-based rule for constrained optimization problem. Przegląd Elektrotechniczny, 89(4), 160–167.Google Scholar
  15. Zhou, Y., Zhou, G., & Zhang, J. (2013). A hybrid glowworm swarm optimization algorithm for constrained engineering design problems. Applied Mathematics & Information Sciences, 7(1), 379–388.CrossRefGoogle Scholar
  16. Mohamed, A. W., & Sabry, H. Z. (2012). Constrained optimization based on modified differential evolution algorithm. Information Sciences, 194, 171–208.CrossRefGoogle Scholar
  17. Fattahi, P., Hosseini, S. M. H., Jolai, F., & Tavakkoli-Moghaddam, R. (2014). A branch and bound algorithm for hybrid flow shop scheduling problem with setup time and assembly operations. Applied Mathematical Modelling, 38(1), 119–134.CrossRefGoogle Scholar
  18. Komaki, G. M., & Kayvanfar, V. (2015). Grey Wolf optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time. Journal of Computational Science, 8, 109–120.CrossRefGoogle Scholar
  19. Yan, H. S., Wan, X. Q., & Xiong, F. L. (2014). A hybrid electromagnetism-like algorithm for two-stage assembly flow shop scheduling problem. International Journal of Production Research, 52(19), 5626–5639.CrossRefGoogle Scholar
  20. Komaki, G. M., Teymourian, E., & Kayvanfar, V. (2016). Minimising makespan in the two-stage assembly hybrid flow shop scheduling problem using artificial immune systems. International Journal of Production Research, 54(4), 963–983.CrossRefGoogle Scholar
  21. Wong, T. C., & Ngan, S. C. (2013). A comparison of hybrid genetic algorithm and hybrid particle swarm optimization to minimize makespan for assembly job shop. Applied Soft Computing, 13(3), 1391–1399.CrossRefGoogle Scholar
  22. Natarajan, K., Mohanasundaram, K. M., Babu, B. S., Suresh, S., Raj, K. A. A. D., & Rajendran, C. (2007). Performance evaluation of priority dispatching rules in multi-level assembly job shops with jobs having weights for flowtime and tardiness. The International Journal of Advanced Manufacturing Technology, 31(7), 751–761.Google Scholar
  23. Paul, M., Sridharan, R., & Ramanan, T. R. (2015). An investigation of order review/release policies and dispatching rules for assembly job shops with multi objective criteria. Procedia-Social and Behavioral Sciences, 189, 376–384.CrossRefGoogle Scholar
  24. Chan, F. T. S., Wong, T. C., & Chan, L. Y. (2008). Lot streaming for product assembly in job shop environment. Robotics and Computer-Integrated Manufacturing, 24(3), 321–331.CrossRefGoogle Scholar
  25. Guo, Z. X., Wong, W. K., Leung, S. Y. S., Fan, J. T., & Chan, S. F. (2006). Mathematical model and genetic optimization for the job shop scheduling problem in a mixed-and multi-product assembly environment: A case study based on the apparel industry. Computers & Industrial Engineering, 50(3), 202–219.CrossRefGoogle Scholar
  26. Thiagarajan, S., & Rajendran, C. (2003). Scheduling in dynamic assembly job-shops with jobs having different holding and tardiness costs. International Journal of Production Research, 41(18), 4453–4486.CrossRefGoogle Scholar
  27. Fuji, W., Jianwei, M., Di, S., Wei, L., & Xiaohong, L. (2012). Research on repair operators in the whole space search genetic algorithm of assembly job shop scheduling problem. In 2012 7th IEEE conference on industrial electronics and applications (ICIEA) (pp. 1922–1927).Google Scholar
  28. Liao, C. J., Lee, C. H., & Lee, H. C. (2015). An efficient heuristic for a two-stage assembly scheduling problem with batch setup times to minimize makespan. Computers & Industrial Engineering, 88, 317–325.CrossRefGoogle Scholar
  29. Seidgar, H., Kiani, M., Abedi, M., & Fazlollahtabar, H. (2014). An efficient imperialist competitive algorithm for scheduling in the two-stage assembly flow shop problem. International Journal of Production Research, 52(4), 1240–1256.CrossRefGoogle Scholar
  30. Dileeplal, J., & Narayanan, K. P. (2012). Multi-objective assembly job shop scheduling using genetic algorithm and tabu search. Doctoral dissertation, Cochin University of Science and Technology.Google Scholar
  31. Bierwirth, C. (1995). A generalized permutation approach to job shop scheduling with genetic algorithms. Operations Research Spektrum, 17(2–3), 87–92.CrossRefGoogle Scholar
  32. Beasley, D., Martin, R. R., & Bull, D. R. (1993). An overview of genetic algorithms: Part 1. Fundamentals. University Computing, 15, 58–58.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ComputingGeorgia Institute of TechnologyAtlantaUSA
  2. 2.George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations