Journal of Scheduling

, Volume 21, Issue 5, pp 533–543 | Cite as

Admission control in shared memory switches

  • Patrick Eugster
  • Alex Kesselman
  • Kirill Kogan
  • Sergey Nikolenko
  • Alexander Sirotkin


Cloud applications bring new challenges to the design of network elements, in particular the burstiness of traffic workloads. A shared memory switch is a good candidate architecture to exploit buffer capacity; in this work, we analyze the performance of this architecture. Our goal is to explore the impact of additional traffic characteristics such as varying processing requirements and packet values on objective functions. The outcome of this work is a better understanding of the relevant parameters for buffer management to achieve better performance in dynamic environments of data centers. We consider a model that captures more of the properties of the target architecture than previous work and consider several scheduling and buffer management algorithms that are specifically designed to optimize its performance. In particular, we provide analytic guarantees for the throughput performance of our algorithms that are independent from specific distributions of packet arrivals. We furthermore report on a comprehensive simulation study which validates our analytic results.


Buffer management Admission control Packet scheduling 


  1. Aiello, W., Kesselman, A., & Mansour, Y. (2008). Competitive buffer management for shared-memory switches. ACM Transactions on Algorithms, 5(1), 3.CrossRefGoogle Scholar
  2. Aiello, W., Mansour, Y., Rajagopolan, S., & Rosén, A. (2005). Competitive queue policies for differentiated services. Journal of Algorithms, 55(2), 113–141.CrossRefGoogle Scholar
  3. Albers, S., & Schmidt, M. (2005). On the performance of greedy algorithms in packet buffering. SIAM Journal on Computing, 35(2), 278–304.CrossRefGoogle Scholar
  4. Azar, Y., & Litichevskey, A. (2006). Maximizing throughput in multi-queue switches. Algorithmica, 45(1), 69–90.CrossRefGoogle Scholar
  5. Azar, Y., & Richter, Y. (2006). An improved algorithm for CIOQ switches. ACM Transactions on Algorithms, 2(2), 282–295.CrossRefGoogle Scholar
  6. Borodin, A., & El-Yaniv, R. (1998). Online computation and competitive analysis. Cambridge: Cambridge University Press.Google Scholar
  7. Chuprikov, P., Nikolenko, S. I., & Kogan, K. (2015). Priority queueing with multiple packet characteristics. In INFOCOM, pp. 1418–1426.Google Scholar
  8. Costa, P., Donnelly, A., Rowstron, A. I. T., & O’Shea, G. (2012). Camdoop: Exploiting in-network aggregation for big data applications. In Proceedings of the 9th USENIX symposium on networked systems design and implementation, NSDI 2012, San Jose, CA, USA, 25–27 April 2012, pp. 29–42.Google Scholar
  9. for Internet Data Analysis, C. T. C. A. (2015).
  10. Davydow, A., Chuprikov, P., Nikolenko, S. I., & Kogan, K. (2017) Throughput optimization with latency constraints. In INFOCOM, pp. 1–9.Google Scholar
  11. Englert, M., & Westermann, M. (2009). Lower and upper bounds on FIFO buffer management in QoS switches. Algorithmica, 53(4), 523–548.CrossRefGoogle Scholar
  12. Eugster, P., Kesselman, A., Kogan, K., Nikolenko, S. I., & Sirotkin, A. (2015). Essential traffic parameters for shared memory switch performance. In SIROCCO, pp. 1–15.CrossRefGoogle Scholar
  13. Eugster, P. T., Kogan, K., Nikolenko, S. I., & Sirotkin, A. (2014). Shared memory buffer management for heterogeneous packet processing. In IEEE 34th international conference on distributed computing systems, ICDCS 2014, Madrid, Spain, June 30–July 3, 2014, pp. 471–480.Google Scholar
  14. Goldwasser, M. (2010). A survey of buffer management policies for packet switches. SIGACT News, 41(1), 100–128.CrossRefGoogle Scholar
  15. Heffes, H., & Lucantoni, D. (1986). A markov modulated characterization of packetized voice and data traffic and related statistical multiplexer performance. IEEE Journal on Selected Areas in Communications, 4(6), 856–868. Scholar
  16. Irland, M. (1978). Best effort and priority queuing policies for buffered crossbar switches. IEEE Transactions on Communications, 26(3), 328–337.CrossRefGoogle Scholar
  17. Keslassy, I., Kogan, K., Scalosub, G., & Segal, M. (2012). Providing performance guarantees in multipass network processors. IEEE/ACM Transactions on Networking, 20(6), 1895–1909.CrossRefGoogle Scholar
  18. Kesselman, A., & Kogan, K. (2007). Nonpreemptive scheduling of optical switches. IEEE Transactions on Communications, 55(6), 1212–1219.CrossRefGoogle Scholar
  19. Kesselman, A., Kogan, K., & Segal, M. (2010). Packet mode and QoS algorithms for buffered crossbar switches with FIFO queuing. Distributed Computing, 23(3), 163–175.CrossRefGoogle Scholar
  20. Kesselman, A., Kogan, K., & Segal, M. (2012). Best effort and priority queuing policies for buffered crossbar switches. Chicago Journal of Theoretical Computer Science, 2012(5), 1–14.CrossRefGoogle Scholar
  21. Kesselman, A., Kogan, K., & Segal, M. (2012b). Improved competitive performance bounds for CIOQ switches. Algorithmica, 63(1–2), 411–424.CrossRefGoogle Scholar
  22. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., & Sviridenko, M. (2004). Buffer overflow management in QoS switches. SIAM Journal on Computing, 33(3), 563–583.CrossRefGoogle Scholar
  23. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., & Sviridenko, M. (2004). Buffer overflow management in QoS switches. SIAM Journal on Computing, 33(3), 563–583.CrossRefGoogle Scholar
  24. Kesselman, A., & Mansour, Y. (2004). Harmonic buffer management policy for shared memory switches. Theoretical Computer Science, 324(2–3), 161–182.CrossRefGoogle Scholar
  25. Kogan, K., López-Ortiz, A., Nikolenko, S. I., & Sirotkin, A. V. (2012). A taxonomy of semi-FIFO policies. In Proceedings of 31st IEEE international performance computing and communications conference (pp. 295–304). IEEE Press.Google Scholar
  26. Kogan, K., López-Ortiz, A., Nikolenko, S. I., Sirotkin, A. V., & Tugaryov, D. (2012). FIFO queueing policies for packets with heterogeneous processing. In Proceedings of 1st Mediterranean Conference on Algorithms, Lecture Notes in Computer Science (Vol. 7659, pp. 248–260). IEEE Press.Google Scholar
  27. Kogan, K., Nikolenko, S. I., Keshav, S., & López-Ortiz, A. (2013). Efficient demand assignment in multi-connected microgrids with a shared central grid. In SustainIT, pp. 1–5.Google Scholar
  28. Kogan, K., López-Ortiz, A., Nikolenko, S. I., Scalosub, G., & Segal, M. (2016). Large profits or fast gains: A dilemma in maximizing throughput with applications to network processors. Journal of Network and Computer Applications, 74, 31–43.CrossRefGoogle Scholar
  29. Mansour, Y., Patt-Shamir, B., & Lapid, O. (2004). Optimal smoothing schedules for real-time streams. Distributed Computing, 17(1), 77–89.CrossRefGoogle Scholar
  30. Nikolenko, S. I., & Kogan, K. (2015). Single and multiple buffer processing. In Encyclopedia of algorithms. Springer.Google Scholar
  31. Pruhs, K. (2007). Competitive online scheduling for server systems. SIGMETRICS Performance Evaluation Review, 34(4), 52–58.CrossRefGoogle Scholar
  32. ShahHeydari, S., & LeNgoc, T. (2000). MMPP models for multimedia traffic. Telecommunication Systems, 15(3), 273–293. Scholar
  33. Sleator, D. D., & Tarjan, R. E. (1985). Amortized efficiency of list update and paging rules. Communications of the ACM, 28(2), 202–208.CrossRefGoogle Scholar
  34. Yang, H., Dasdan, A., Hsiao, R., Jr., & D. S. P. (2007). Map-reduce-merge: Simplified relational data processing on large clusters. In Proceedings of the ACM SIGMOD international conference on management of data, Beijing, China, 12–14 June 2007, pp. 1029–1040.Google Scholar
  35. Yu, Y., Gunda, P. K., & Isard, M. (2009). Distributed aggregation for data-parallel computing: Interfaces and implementations. In SOSP, pp. 247–260.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of LuganoLuganoSwitzerland
  2. 2.Purdue UniversityWest LafayetteUSA
  3. 3.TU DarmstadtDarmstadtGermany
  4. 4.Google Inc.Mountain ViewUSA
  5. 5.IMDEA Networks InstituteMadridSpain
  6. 6.National Research University Higher School of EconomicsSt. PetersburgRussia
  7. 7.Steklov Institute of Mathematics at St. PetersburgSt. PetersburgRussia

Personalised recommendations