Journal of Scheduling

, Volume 21, Issue 5, pp 517–531 | Cite as

A two-stage stochastic program for multi-shift, multi-analyst, workforce optimization with multiple on-call options

  • Douglas S. AltnerEmail author
  • Anthony C. Rojas
  • Leslie D. Servi


Motivated by a cybersecurity workforce optimization problem, this paper investigates optimizing staffing and shift scheduling decisions given unknown demand and multiple on-call staffing options at a 24/7 firm with three shifts per day, three analyst types, and several staffing and scheduling constraints. We model this problem as a two-stage stochastic program and solve it with a column-generation-based heuristic. Our computational study shows this method only needs 3 min to produce solutions within 6% of a true lower bound of the optimal for 99% of over 150 test cases.


Workforce optimization Shift scheduling Staffing Scheduling On-call options Stochastic programming Column generation Cybersecurity 


  1. Altner, D. S., Mason, E. K., & Servi, L. D. (2017). Scheduling and training multi-skilled analysts under uncertainty with many job types (submitted).Google Scholar
  2. Al-Yakoob, S. M., & Sherali, H. D. (2007). A column generation approach for an employee scheduling problem with multiple shifts and work locations. Journal of the Operational Research Society, 59(1), 34–43.CrossRefGoogle Scholar
  3. Aykin, T. (1996). Optimal shift scheduling with multiple break windows. Management Science, 42(4), 591–602.CrossRefGoogle Scholar
  4. Baker, S. F., Palekar, U., Gupta, G., Kale, L., Langer, A., Surina, M., & Venkataraman, R. (2012). Parallel computing for DoD airlift allocation, MITRE Corporation Technical Report.Google Scholar
  5. Bard, J. F., Binici, C., & de Silva, A. H. (2003). Staff scheduling at the United States Postal Service. Computers & Operations Research, 30(5), 745–771.CrossRefGoogle Scholar
  6. Bard, J. F., Morton, D. P., & Wang, Y. M. (2007). Workforce planning at USPS mail processing and distribution centers using stochastic optimization. Annals of Operations Research, 155(1), 51–78.CrossRefGoogle Scholar
  7. Bard, J. F., & Purnomo, H. W. (2005). Preference scheduling for nurses using column generation. European Journal of Operational Research, 164(2), 510–534.CrossRefGoogle Scholar
  8. Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., & Vance, P. H. (1998). Branch-and-price: Column generation for solving huge integer programs. Operations Research, 46(3), 316–329.CrossRefGoogle Scholar
  9. Bertsimas, D., & Tsitsiklis, J. N. (1997). Introduction to linear optimization. Belmont, MA: Athena Scientific.Google Scholar
  10. Birge, J. R. (1995). Models and model value in stochastic programming. Annals of Operations Research, 59(1), 1–18.CrossRefGoogle Scholar
  11. Bodur, M., & Luedtke, J. R. (2016). Mixed-integer rounding enhanced Benders’ decomposition for multiclass service system staffing and scheduling with arrival rate uncertainty. Management Science, 63(7), 2073–2091.CrossRefGoogle Scholar
  12. Burke, E. K., De Causmaecker, P., Vanden Berghe, G., & Van Landeghem, H. (2004). The state of the art of nurse rostering. Journal of Scheduling, 7(6), 441–499.CrossRefGoogle Scholar
  13. Çezik, T., Günlük, O., & Luss, H. (2001). An integer programming model for the weekly tour scheduling problem. Naval Research Logistics, 48(7), 607–624.CrossRefGoogle Scholar
  14. Chu, H. D., Gelman, E., & Johnson, E. L. (1997). Solving large scale crew scheduling problems. European Journal of Operational Research, 97, 260–268.CrossRefGoogle Scholar
  15. Côté, M.-C., Gendron, B., & Rousseau, L.-M. (2011). Grammar-based integer programming models for multiactivity shift scheduling. Management Science, 57(1), 151–163.CrossRefGoogle Scholar
  16. Ernst, A. T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff scheduling and rostering: A review of applications, methods and models. European Journal of Operational Research, 153, 3–27.CrossRefGoogle Scholar
  17. Ganesan, R., Jajodia, S., & Cam, H. (2017). Optimal scheduling of cybersecurity analysts for minimizing risk. ACM Transactions on Intelligent Systems and Technology, 8(4), 52:1–52:32.CrossRefGoogle Scholar
  18. Ganesan, R., Jajodia, S., Shah, A., & Cam, H. (2016). Dynamic scheduling of cybersecurity analysts for minimizing risk using reinforcement learning. ACM Transactions on Intelligent Systems and Technology, 8(1), 4:1–4:21.CrossRefGoogle Scholar
  19. Gopalakrishnan, B., & Johnson, E. L. (2005). Airline crew scheduling: State of the art. Annals of Operations Research, 140(1), 305–337.CrossRefGoogle Scholar
  20. Gurvich, I., Luedtke, J. R., & Tezcan, T. (2010). Staffing call centers with uncertain demand forecasts: A chance-constrained optimization approach. Management Science, 56(7), 1093–1115.CrossRefGoogle Scholar
  21. Kall, P., & Wallace, S. W. (1994). Stochastic programming. New York: Wiley.Google Scholar
  22. Kao, E. P. C., & Queyranne, M. (1985). Budgeting costs of nursing in a hospital. Management Science, 31(5), 608–621.CrossRefGoogle Scholar
  23. Karuppiah, R., Martin, M., & Grossmann, I. E. (2010). A simple heuristic for reducing the number of scenarios in two-stage stochastic programming. Computers & Chemical Engineering, 34(8), 1246–1255.CrossRefGoogle Scholar
  24. Kim, K., & Mehrotra, S. (2015). A two-stage stochastic integer programming approach to integrated staffing and scheduling with application to nurse management. Operations Research, 63(6), 1431–1451.CrossRefGoogle Scholar
  25. Linderoth, J., Shapiro, A., & Wright, S. (2006). The empirical behavior of sampling methods for stochastic programming. Annals of Operations Research, 142(1), 215–241.CrossRefGoogle Scholar
  26. Linderoth, J., & Wright, S. (2003). Decomposition algorithms for stochastic programming on a computational grid. Computational Optimization and Applications, 24(2), 207–250.CrossRefGoogle Scholar
  27. Mak, W.-K., Morton, D. P., & Wood, R. K. (1999). Monte Carlo bounding techniques for determining solution quality in stochastic programs. Operations Research Letters, 24(1), 47–56.CrossRefGoogle Scholar
  28. Mehrotra, A., Murphy, K. E., & Trick, M. A. (2000). Optimal shift scheduling: a branch and price approach. Naval Research Logistics, 47(3), 185–200.CrossRefGoogle Scholar
  29. Parisio, A., & Jones, C. N. (2015). A two-stage stochastic programming approach to employee scheduling in retail outlets with uncertain demand. Omega, 53, 97–103.CrossRefGoogle Scholar
  30. Robbins, T. R., & Harrison, T. P. (2010). A stochastic programming model for scheduling call centers with global service level agreements. European Journal of Operational Research, 207(3), 1608–1619.CrossRefGoogle Scholar
  31. Van Den Bergh, J., Beliën, J., Brucker, P. D., Demeulemeester, E., & De Boeck, L. (2013). Personnel scheduling: A literature review. European Journal of Operational Research, 226(3), 367–385.CrossRefGoogle Scholar
  32. Vaidyanathan, B., Jha, K. C., & Ahuja, R. K. (2007). Multicommodity network flow approach to the railroad crew scheduling problem. IBM Journal of Research and Development - Business Optimization, 51(3), 325–244.CrossRefGoogle Scholar
  33. Zhu, X., & Sherali, H. D. (2009). Two-stage workforce planning under demand fluctuations and uncertainty. Journal of the Operational Research Society, 60(1), 94–103.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Douglas S. Altner
    • 1
    Email author
  • Anthony C. Rojas
    • 1
  • Leslie D. Servi
    • 1
  1. 1.Operations Research DepartmentThe MITRE CorporationMcLeanUSA

Personalised recommendations