Advertisement

Journal of Scheduling

, Volume 21, Issue 5, pp 493–503 | Cite as

Scheduling meets n-fold integer programming

  • Dušan Knop
  • Martin Koutecký
Article

Abstract

Scheduling problems are fundamental in combinatorial optimization. Much work has been done on approximation algorithms for NP-hard cases, but relatively little is known about exact solutions when some part of the input is a fixed parameter. In this paper, we continue this study and show that several additional cases of fundamental scheduling problems are fixed-parameter tractable for some natural parameters. Our main tool is n-fold integer programming, a recent variable dimension technique which we believe to be highly relevant for the parameterized complexity community. This paper serves to showcase and highlight this technique. Specifically, we show the following four scheduling problems to be fixed-parameter tractable, where \(p_{\max }\) is the maximum processing time of a job and \(w_{\max }\) is the maximum weight of a job:
  • Makespan minimization on uniformly related machines (\(Q||C_{\max }\)) parameterized by \(p_{\max }\),

  • Makespan minimization on unrelated machines (\(R||C_{\max }\)) parameterized by \(p_{\max }\) and the number of kinds of machines (defined later),

  • Sum of weighted completion times minimization on unrelated machines (\(R||\sum w_jC_j\)) parameterized by \(p_{\max }+w_{\max }\) and the number of kinds of machines,

  • The same problem, \(R||\sum w_jC_j\), parameterized by the number of distinct job times and the number of machines.

Keywords

Fixed parameterized tractability Scheduling on parallel machines 

Mathematics Subject Classification

90B35 90C10 03D15 

Notes

Acknowledgements

We would like to thank René van Bevern for pointing us to much related work. We are grateful to Matthias Mnich for pointing out the exponential speed-up of our result compared to the previous work, and other useful comments. Finally, we are grateful to the anonymous reviewers for their comments which made the paper more readable.

References

  1. Allahverdi, A. (2015). The third comprehensive survey on scheduling problems with setup times/costs. European Journal of Operational Research, 246(2), 345–378.  https://doi.org/10.1016/j.ejor.2015.04.004.CrossRefGoogle Scholar
  2. Asahiro, Y., Jansson, J., Miyano, E., Ono, H., & Zenmyo, K. (2011). Approximation algorithms for the graph orientation minimizing the maximum weighted outdegree. Journal of Combinatorial Optimization, 22(1), 78–96.  https://doi.org/10.1007/s10878-009-9276-z.CrossRefGoogle Scholar
  3. Blekherman, G., Parrilo, P. A., & Thomas, R. R. (2012). Semidefinite optimization and convex algebraic geometry. Philadelphia: SIAM.CrossRefGoogle Scholar
  4. Bodlaender, H. L., & Fellows, M. R. (1995). W[2]-hardness of precedence constrained k-processor scheduling. Operations Research Letter, 18(2), 93–97.  https://doi.org/10.1016/0167-6377(95)00031-9.CrossRefGoogle Scholar
  5. Bruno, J., Coffman, E. G, Jr., & Sethi, R. (1974). Scheduling independent tasks to reduce mean finishing time. Communications of the ACM, 17(7), 382–387.  https://doi.org/10.1145/361011.361064.CrossRefGoogle Scholar
  6. Chen, L., Marx, D., Ye, D., & Zhang, G. (2017). Parameterized and approximation results for scheduling with a low rank processing time matrix. In LIPIcs-Leibniz international proceedings in informatics (Vol. 66). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.Google Scholar
  7. Demaine, E.D., Hajiaghayi, M., Marx, D. (eds.) (2009). Parameterized complexity and approximation algorithms. Dagstuhl seminar proceedings (Vol. 09511), 13.12.2009–17.12.2009, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany http://drops.dagstuhl.de/portals/09511/.
  8. Downey, R. G., & Fellows, M. R. (2013). Fundamentals of parameterized complexity. Texts in computer science. Berlin: Springer.CrossRefGoogle Scholar
  9. Fellows, M. R., & McCartin, C. (2003). On the parametric complexity of schedules to minimize tardy tasks. Theoretical Computer Science, 2(298), 317–324.  https://doi.org/10.1016/S0304-3975(02)00811-3.CrossRefGoogle Scholar
  10. Garey, M. R., & Johnson, D. S. (1979) Computers and intractability: A guide to the theory of np-completenessGoogle Scholar
  11. Goemans, M., & Williamson, D. P. (2000). Two-dimensional Gantt charts and a scheduling algorithm of Lawler. SIAM Journal on Discrete Mathematics, 13(3), 281–294.  https://doi.org/10.1137/S0895480197330254, http://epubs.siam.org/sam-bin/dbq/article/33025.CrossRefGoogle Scholar
  12. Halldórsson, M.M., & Karlsson, R.K. (2006). Strip graphs: Recognition and scheduling. In WG 2006 (pp. 137–146).  https://doi.org/10.1007/11917496_13.CrossRefGoogle Scholar
  13. Hemmecke, R., Köppe, M., & Weismantel, R. (2014). Graver basis and proximity techniques for block-structured separable convex integer minimization problems. Mathematical Programming, 145(1–2), 1–18.  https://doi.org/10.1007/s10107-013-0638-z.CrossRefGoogle Scholar
  14. Hemmecke, R., Onn, S., & Romanchuk, L. (2013). n-fold integer programming in cubic time. Mathematical Programming, 137(1–2), 325–341.  https://doi.org/10.1007/s10107-011-0490-y.CrossRefGoogle Scholar
  15. Hermelin, D., Kubitza, J., Shabtay, D., Talmon, N., & Woeginger, G. J. (2015). Scheduling two competing agents when one agent has significantly fewer jobs. IPEC, 2015, 55–65.  https://doi.org/10.4230/LIPIcs.IPEC.2015.55.CrossRefGoogle Scholar
  16. Hildebrand, R., & Köppe, M. (2013). A new Lenstra-type algorithm for quasiconvex polynomial integer minimization with complexity \(2^{O(n{\rm log}n)}\). Discrete Optimization, 10(1), 69–84.CrossRefGoogle Scholar
  17. Hochbaum, D. S., & Shanthikumar, J. G. (1990). Convex separable optimization is not much harder than linear optimization. Journal of the ACM, 37(4), 843–862.  https://doi.org/10.1145/96559.96597.CrossRefGoogle Scholar
  18. Horn, W. A. (1973). Technical note—Minimizing average flow time with parallel machines. Operations Research, 21(3), 846–847.  https://doi.org/10.1287/opre.21.3.846.CrossRefGoogle Scholar
  19. Jansen, K., Kratsch, S., Marx, D., & Schlotter, I. (2013). Bin packing with fixed number of bins revisited. Journal of Computer and System Sciences, 79(1), 39–49.  https://doi.org/10.1016/j.jcss.2012.04.004.CrossRefGoogle Scholar
  20. Khachiyan, L., & Porkolab, L. (2000). Integer optimization on convex semialgebraic sets. Discrete & Computational Geometry, 23(2), 207–224.CrossRefGoogle Scholar
  21. Knop, D., Kouteckỳ, M., & Mnich, M. (2017) Voting and bribing in single-exponential time. In 34th symposium on theoretical aspects of computer science.Google Scholar
  22. Kononov, A. V., Sevastyanov, S., & Sviridenko, M. (2012). A complete 4-parametric complexity classification of short shop scheduling problems. Journal of Scheduling, 15(4), 427–446.  https://doi.org/10.1007/s10951-011-0243-z.CrossRefGoogle Scholar
  23. Lawler, E. L., Lenstra, J. K., Kan, A. H. R., & Shmoys, D. B. (1993). Sequencing and scheduling: Algorithms and complexity. Handbooks in operations research and management science, 4, 445–522.CrossRefGoogle Scholar
  24. Lenstra, H. W, Jr. (1983). Integer programming with a fixed number of variables. Mathematics of Operations Research, 8(4), 538–548.CrossRefGoogle Scholar
  25. Loera, J. A. D., Hemmecke, R., & Köppe, M. (2013). Algebraic and geometric ideas in the theory of discrete optimization. MOS-SIAM series on optimization (Vol. 14). Philadelphia: SIAM.Google Scholar
  26. Marx, D. (2011). Packing and scheduling algorithms for information and communication services (dagstuhl seminar 11091). Dagstuhl Reports, 1(2), 67–93.  https://doi.org/10.4230/DagRep.1.2.67.CrossRefGoogle Scholar
  27. Mnich, M., & Wiese, A. (2014). Scheduling and fixed-parameter tractability. Mathematical Programming, 154(1), 533–562.  https://doi.org/10.1007/s10107-014-0830-9.CrossRefGoogle Scholar
  28. Onn, S. (2010). Nonlinear discrete optimization. Zurich Lectures in Advanced Mathematics: European Mathematical Society.Google Scholar
  29. Onn, S., & Sarrabezolles, P. (2015). Huge unimodular \(n\)-fold programs. SIAM Journal on Discrete Mathematics, 29(4), 2277–2283.  https://doi.org/10.1137/151004227.CrossRefGoogle Scholar
  30. Potts, C. N., & Strusevich, V. A. (2009). Fifty years of scheduling: A survey of milestones. Journal of the Operational Research Society, 60(1), S41–S68.  https://doi.org/10.1057/jors.2009.2.CrossRefGoogle Scholar
  31. Sitters, R. (2005). Complexity of preemptive minsum scheduling on unrelated parallel machines. Journal of Algorithms, 57(1), 37–48.  https://doi.org/10.1016/j.jalgor.2004.06.011.CrossRefGoogle Scholar
  32. van Bevern, R., Bredereck, R., Bulteau, L., Komusiewicz, C., Talmon, N., & Woeginger, G.J. (2016). Precedence-constrained scheduling problems parameterized by partial order width. In Proceedings of the 9th international conference on discrete optimization and operations research, DOOR 2016, Vladivostok, Russia, September 19–23, 2016, pp. 105–120.Google Scholar
  33. van Bevern, R., Mnich, M., Niedermeier, R., & Weller, M. (2015a). Interval scheduling and colorful independent sets. Journal of Scheduling, 18(5), 449–469.  https://doi.org/10.1007/s10951-014-0398-5.CrossRefGoogle Scholar
  34. van Bevern, R., Niedermeier, R., & Suchý, O. (2015b). A parameterized complexity view on non-preemptively scheduling interval-constrained jobs: Few machines, small looseness, and small slack. CoRR arXiv:1508.01657.
  35. van Bevern, R., & Pyatkin, A. V. (2016). Completing partial schedules for open shop with unit processing times and routing. CSR, 2016, 73–87.  https://doi.org/10.1007/978-3-319-34171-2_6.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Applied Mathematics (KAM)Charles UniversityPragueCzech Republic

Personalised recommendations