Advertisement

Journal of Scheduling

, Volume 21, Issue 4, pp 429–441 | Cite as

Online-bounded analysis

  • Joan Boyar
  • Leah Epstein
  • Lene M. Favrholdt
  • Kim S. Larsen
  • Asaf Levin
Article
  • 41 Downloads

Abstract

Though competitive analysis is often a very good tool for the analysis of online algorithms, sometimes it does not give any insight and sometimes it gives counter-intuitive results. Much work has gone into exploring other performance measures, in particular targeted at what seems to be the core problem with competitive analysis: The comparison of the performance of an online algorithm is made with respect to a too powerful adversary. We consider a new approach to restricting the power of the adversary, by requiring that when judging a given online algorithm, the optimal offline algorithm must perform at least as well as the online algorithm, not just on the entire final request sequence, but also on any prefix of that sequence. This is limiting the adversary’s usual advantage of being able to exploit that it knows the sequence is continuing beyond the current request. Through a collection of online problems, including machine scheduling, bin packing, dual bin packing, and seat reservation, we investigate the significance of this particular offline advantage.

Keywords

Online algorithms Quality measures Machine scheduling Bin packing 

Notes

Acknowledgements

Funding was provided by The Danish Council for Independent Research (Grant No. DFF-1323-00247) and The Villum Foundation (Grant No. VKR023219).

References

  1. Albers, S. (1997). On the influence of lookahead in competitive paging algorithms. Algorithmica, 18, 283–305.CrossRefGoogle Scholar
  2. Albers, S., Favrholdt, L. M., & Giel, O. (2005). On paging with locality of reference. Journal of Computer and System Sciences, 70(2), 145–175.CrossRefGoogle Scholar
  3. Angelopoulos, S., Dorrigiv, R., & López-Ortiz, A. (2007). On the separation and equivalence of paging strategies. In 18th ACM–SIAM symposium on discrete algorithms (SODA) (pp. 229–237)Google Scholar
  4. Azar, Y., Boyar, J., Epstein, L., Favrholdt, L. M., Larsen, K. S., & Nielsen, M. N. (2002). Fair versus unrestricted bin packing. Algorithmica, 34(2), 181–196.CrossRefGoogle Scholar
  5. Azar, Y., & Epstein, L. (1998). On-line machine covering. Journal of Scheduling, 1(2), 67–77.CrossRefGoogle Scholar
  6. Azar, Y., & Regev, O. (2001). On-line bin-stretching. Theoretical Computer Science, 268(1), 17–41.CrossRefGoogle Scholar
  7. Bach, E., Boyar, J., Epstein, L., Favrholdt, L. M., Jiang, T., Larsen, K. S., et al. (2003). Tight bounds on the competitive ratio on accommodating sequences for the seat reservation problem. Journal of Scheduling, 6(2), 131–147.CrossRefGoogle Scholar
  8. Bansal, N., & Sviridenko, M. (2006). The Santa Claus problem. In 38th annual ACM symposium on the theory of computing (STOC) (pp. 31–40)Google Scholar
  9. Ben-David, S., & Borodin, A. (1994). A new measure for the study of on-line algorithms. Algorithmica, 11(1), 73–91.CrossRefGoogle Scholar
  10. Borodin, A., Irani, S., Raghavan, P., & Schieber, B. (1995). Competitive paging with locality of reference. Journal of Computer and System Sciences, 50(2), 244–258.CrossRefGoogle Scholar
  11. Boyar, J., Favrholdt, L., Mikkelsen, J., & Kudahl, C. (2015). Advice complexity for a class of online problems. In 32nd international symposium on theoretical aspects of computer science (STACS), Leibniz international proceedings in informatics (Vol. 30) (pp. 116–129).Google Scholar
  12. Boyar, J., & Favrholdt, L. M. (2007). The relative worst order ratio for on-line algorithms. ACM Transactions on Algorithms, 3(2), article 22, 24 p.Google Scholar
  13. Boyar, J., Favrholdt, L. M., Larsen, K. S., & Nielsen, M. N. (2003). Extending the accommodating function. Acta Informatica, 40(1), 3–35.CrossRefGoogle Scholar
  14. Boyar, J., & Larsen, K. (1999). The seat reservation problem. Algorithmica, 25, 403–417.CrossRefGoogle Scholar
  15. Boyar, J., Larsen, K. S., & Nielsen, M. N. (2001). The accommodating function—A generalization of the competitive ratio. SIAM Journal on Computing, 31(1), 233–258.CrossRefGoogle Scholar
  16. Breslauer, D. (1998). On competitive on-line paging with lookahead. Theoretical Computer Science, 209(1–2), 365–375.CrossRefGoogle Scholar
  17. Chan, S. H., Lam, T. W., Lee, L. K., Liu, C. M., & Ting, H. F. (2011). Sleep management on multiple machines for energy and flow time. In L. Aceto, M. Henzinger, & J. Sgall (Eds.), Automata, languages and programming (ICALP), LNCS (Vol. 6755, pp. 219–231). Berlin: Springer.CrossRefGoogle Scholar
  18. Cho, Y., & Sahni, S. (1980). Bounds for list schedules on uniform processors. SIAM Journal on Computing, 9(1), 91–103.CrossRefGoogle Scholar
  19. Csirik, J., & Totik, V. (1988). On-line algorithms for a dual version of bin packing. Discrete Applied Mathematics, 21, 163–167.CrossRefGoogle Scholar
  20. Dorrigiv, R., López-Ortiz, A., & Munro, J. I. (2009). On the relative dominance of paging algorithms. Theoretical Computer Science, 410, 3694–3701.CrossRefGoogle Scholar
  21. Ehmsen, M. R., Kohrt, J. S., & Larsen, K. S. (2013). List factoring and relative worst order analysis. Algorithmica, 66(2), 287–309.CrossRefGoogle Scholar
  22. Epstein, L. (2005). Tight bounds for bandwidth allocation on two links. Discrete Applied Mathematics, 148(2), 181–188.CrossRefGoogle Scholar
  23. Epstein, L., Favrholdt, L. M., & Kohrt, J. S. (2006). Separating online scheduling algorithms with the relative worst order ratio. Journal of Combinatorial Optimization, 12(4), 363–386.CrossRefGoogle Scholar
  24. Epstein, L., Noga, J., Seiden, S. S., Sgall, J., & Woeginger, G. J. (2001). Randomized online scheduling on two uniform machines. Journal of Scheduling, 4(2), 71–92.CrossRefGoogle Scholar
  25. Giannakopoulos, Y., & Koutsoupias, E. (2015). Competitive analysis of maintaining frequent items of a stream. Theoretical Computer Science, 562, 23–32.CrossRefGoogle Scholar
  26. Graham, R. L. (1966). Bounds for certain multiprocessing anomalies. Bell Systems Technical Journal, 45, 1563–1581.CrossRefGoogle Scholar
  27. Kalyanasundaram, B., & Pruhs, K. (2000). Speed is as powerful as clairvoyance. Journal of the ACM, 47(4), 617–643.CrossRefGoogle Scholar
  28. Karlin, A. R., Manasse, M. S., Rudolph, L., & Sleator, D. D. (1988). Competitive snoopy caching. Algorithmica, 3, 79–119.CrossRefGoogle Scholar
  29. Karlin, A. R., Phillips, S. J., & Raghavan, P. (2000). Markov paging. SIAM Journal on Computing, 30(3), 906–922.Google Scholar
  30. Kenyon, C. (1996). Best-fit bin-packing with random order. In 7th ACM-SIAM symposium on discrete algorithms (SODA) (pp. 359–364)Google Scholar
  31. Koutsoupias, E., & Papadimitriou, C. H. (2000). Beyond competitive analysis. SIAM Journal on Computing, 30(1), 300–317.CrossRefGoogle Scholar
  32. Miyazaki, S., & Okamoto, K. (2010). Improving the competitive ratios of the seat reservation problem. In 6th IFIP TC 1/WG 2.2 international conference on theoretical computer science (IFIP TCS), IFIP advances in information and communication technology (Vol. 323) (pp. 328–339). Springer.Google Scholar
  33. Raghavan, P. (1992). A statistical adversary for on-line algorithms. In On-line algorithms, Series in discrete mathematics and theoretical computer science (Vol. 7) (pp. 79–83). American Mathematical Society.Google Scholar
  34. Sleator, D. D., & Tarjan, R. E. (1985). Amortized efficiency of list update and paging rules. Communications of the ACM, 28(2), 202–208.CrossRefGoogle Scholar
  35. Woeginger, G. J. (1997). A polynomial-time approximation scheme for maximizing the minimum machine completion time. Operations Research Letters, 20(4), 149–154.CrossRefGoogle Scholar
  36. Young, N. (1991). Competitive paging and dual-guided algorithms for weighted caching and matching (thesis). Tech. rep. CS-TR-348-91, Computer Science Department, Princeton University.Google Scholar
  37. Young, N. E. (1994). The \(k\)-server dual and loose competitiveness for paging. Algorithmica, 11, 525–541.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkOdenseDenmark
  2. 2.Department of MathematicsUniversity of HaifaHaifaIsrael
  3. 3.Faculty of IE&MThe TechnionHaifaIsrael

Personalised recommendations