Advertisement

Microseismicity analysis in the geothermal area of Torre Alfina, Central Italy

  • Arianna LisiEmail author
  • Alessandro Marchetti
  • Alberto Frepoli
  • Nicola Mauro Pagliuca
  • Giuliana Mele
  • Maria Luisa Carapezza
  • Marco Caciagli
  • Daniela Famiani
  • Alessandro Gattuso
  • Thomas Braun
Original Article
  • 23 Downloads

Abstract

The geothermal field of Torre Alfina is located in central Italy at the northern edge of the Vulsini Volcanic District, the northernmost area of the so-called Quaternary Roman Co-Magmatic Province. In the framework of a medium-enthalpy geothermal exploitation project, INGV installed a local seismic network close to the future geothermal production site for monitoring natural local seismicity. In this paper, we show the results of a study of the microseismicity recorded from June 2014 to May 2016 in a small area of about 10 km2 around Torre Alfina. Analyzing seismic signals recorded by a local temporary network of ten short-period stations and by four permanent stations of the INGV national seismic network, we detected 846 local earthquakes. Then, we accurately relocated 799 events using HypoDD code. Our results show that the region of Torre Alfina is characterized by intense microseismicity, with hypocentral depths between 3 and 7 km and with moderate magnitudes between Md = 0.1 and ML = 2.8. Moreover, more than half of the earthquakes are grouped into six main swarm-like clusters each lasting few days. Furthermore, we computed 36 well-constrained fault plane solutions, which show a clear transtensional deformation regime in the whole study area. Three main tectonic directions have been evidenced from the focal mechanisms analysis: E-W, WSW-ENE, and NW-SE. The understanding of the seismogenic structural setting of the Torre Alfina geothermal field, and the study of its background natural seismicity can be of great importance in recognizing any possible future seismicity induced by the exploitation of the field.

Keywords

Geothermal field Earthquake location Microseismicity Focal mechanism Central Italy 

Notes

Acknowledgments

The present study on Torre Alfina geothermal field has been carried out in the framework of a research contract between INGV and ITW & LKW Geotermia Italia spa.

References

  1. Acocella V (2000) Space accommodation by roof lifting during pluton emplacement at Amiata (Italy). Terra Nova 12:149–155CrossRefGoogle Scholar
  2. Acocella V, Funiciello R (2002) Transverse structures and volcanic activity along the Tyrrhenian margin of Central Italy. Boll Soc Geol Ital Spec 1:739–747Google Scholar
  3. Acocella V, Funiciello R (2006) Transverse systems along the extensional Tyrrhenian margin of Central Italy and their influence on volcanism. Tectonics 25:TC2003.  https://doi.org/10.1029/2005TC001845 CrossRefGoogle Scholar
  4. Acocella V, Pascucci V, Dominici G (2002) Basin deformation due to laccolith emplacement at Radicofani (southern Tuscany, Italy). Boll Soc Geol Ital 1:749–756Google Scholar
  5. Alessandrini B, Filippi L, Borgia A (2001) Upper-crust tomographic structure of the Central Apennines, Italy, from local earthquakes. Tectonophysics 339:479–494CrossRefGoogle Scholar
  6. Avanzinelli R, Lustrino M, Mattei M, Melluso L, Conticelli S (2009) Potassic and ultrapotassic magmatism in the circum-Tyrrhenian region: significance of carbonated pelitic vs. pelitic sediment recycling at destructive plate margins. Lithos 113:213–227CrossRefGoogle Scholar
  7. Bakun WH, Lindh A (1977) Local magnitudes, seismic moments, and coda durations for earthquakes near Oroville, California. Bull Seism Soc Am 63:615–629Google Scholar
  8. Barberi F, Buonasorte G, Cioni R, Fiordelisi A, Foresi L, Iaccarino S, Laurcnzi M, Sbrana A, Vernia L, Villa IM (1994) Plio-Pleistocene geological evolution of the geothermal area of Tuscany and Latium. Mem Soc Geol Ital 49:63–109Google Scholar
  9. Barchi MR, De Feyter A, Magnani MB, Minelli G, Pialli G, Sotera M (1998) Extensional tectonics in the northern Apennines (Italy); evidence from the CROP 03 deep seismic reflection line. Mem Soc Geol Ital 52:527–538Google Scholar
  10. Batini F, Fiordelisi A, Graziano F, Nafi Toksöz M (1995) Earthquakes and tomography in the Larderello geothermal area: geothermal anomalies and structural features of southern Tuscany. World Geothermal Congress Proceedings, Florence, pp 817–820Google Scholar
  11. Bonciani F, Callegari I, Conti P, Cornamusini G, Carmignani L. (2005) Neogene post-collisional evolution of the internal Northern Apennines:insights from the upper Fiora and Albegna valleys(Mt. Amiata geothermal area, southern Tuscany) Boll. Soc. Geol. It., Volume Speciale n. 3, 103–118Google Scholar
  12. Bellani S, Brogi A, Lazzarotto A, Liotta D, Ranalli G (2004) Heat flow, deep temperatures and extensional structures in the Larderello geothermal field (Italy): constraints on geothermal fluid flow. J Volcanol Geotherm Res 132:15–29CrossRefGoogle Scholar
  13. Boncio P, Lavecchia G, Pace B (2004) Defining a model of 3D seismogenic sources for seismic Harzard assessment applications; the case of Central Apennines (Italy). J Seismol 8:407–425CrossRefGoogle Scholar
  14. Braun T, Pagliuca NM, Gattuso A, Mele G, Caciagli M, Famiani D, Marchetti A, Badiali L, Frepoli A, Lisi A, Carapezza ML (2017) Installazione della rete di monitoraggio sismico ReMoTA nell’area geotermica di Torre Alfina-Castel Giorgio (Lazio settentrionale-Umbria). Rapp Tec INGV 370:1–44 (in Italian)Google Scholar
  15. Braun T, Caciagli M, Carapezza ML, Famiani D, Gattuso A, Lisi A, Marchetti A, Mele G, Pagliuca NM, Ranaldi M, Sortino F, Tarchini L, Kriegerowski M, Cesca S (2018) The seismic sequence of 30th May - 9th June 2016 in the geothermal site of Torre Alfina (Central Italy) and related variations in soil gas emissions. J Volcanol Geotherm Res 359:21–36CrossRefGoogle Scholar
  16. Brogi A (2008) The Triassic and Palaeozoic successions drilled in the Bagnore geothermal field and Poggio Nibbio area (Monte Amiata, Northern Apennines, Italy). Boll Soc Geol Ital 3:599–613Google Scholar
  17. Brogi A (2011) Bowl-shaped basin related to low-angle dethachment during continental extension; the case of the controversial Neogene Siena Basin (Central Italy, Northern Aennines). Tectonophysics 499:54–76CrossRefGoogle Scholar
  18. Brogi A, Fabbrini L (2009) Extensional and strike-slip tectonics across the Monte Amiata–Monte Cetona transect (Northern Apennines, Italy) and seismotectonic implications. Tectonophysics 476:195–209CrossRefGoogle Scholar
  19. Brogi A, Liotta D (2008) Highly extended terrains, lateral segmentation of the substratum, and basin development: the middle-late Miocene Radicondoli Basin (inner northern Apennines, Italy). Tectonics 27:TC5002.  https://doi.org/10.1029/2007TC002188 CrossRefGoogle Scholar
  20. Brogi A, Liotta D, Meccheri M, Fabbrini L (2010) Transtensional shear zones controlling volcanic eruptions: the middle Pleistocene Mt Amiata volcano (inner Northern Apennines, Italy). Terra Nova 22:137–146CrossRefGoogle Scholar
  21. Brogi A, Fidolini F, Liotta D (2013) Tectonic and sedimentary evolution of the upper Valdarno Basin: new insights from the lacustrine S. Barbara Basin. Ital J Geosci 132(1):81–97Google Scholar
  22. Brogi A, Capezzuoli E, Martini I, Picozzi M, Sandrelli F (2014) Late Quaternary tectonics in the inner northern Apennines (Siena Basin, southern Tuscany, Italy) and theis seismotectonic implications. J Geodyn 76:25–45CrossRefGoogle Scholar
  23. Brozzetti F, Lavecchia G (1994) Seismicity and related extensional stress field: the case of the Norcia seismic zone. Annales Tectonicae 8:38–57Google Scholar
  24. Buonasorte G, Fiordelisi A, Rossi U (1987) Tectonic structures and geometric setting of the Vulsini volcanic complex. Periodico di Mineralogia 56:123–136Google Scholar
  25. Buonasorte G, Cataldi R, Ceccarelli A, Costantini A, D'Offizi S, Lazzarotto A, Ridolfi A, Baldi P, Barelli A, Bertini G, Bertrami R, Calamai A, Cameli G, Coral R, D'Acquino C, Fiordelisi A, Ghezzo A, Lovari F (1988) Ricerca ed esplorazione nell’area geotermica di Torre Alfina (Lazio-Umbria), (in Italian). Boll Soc Geol Ital 107(2):265–237 (in Italian)Google Scholar
  26. Buonasorte G, Pandeli E, Fiordelisi A (1991) The Alfina 15 well: deep geological data from northern Latium (Torre Alfina geothermal area). Boll Soc Geol Ital I10:823–831Google Scholar
  27. Buonasorte G, Cameli GM, Ceron A, Cioni R, Pensieri R, Sbrana A (1995) Seismic reflection in the Bolsena Lake: a contribution to the knowledge of a caldera controlled geothermal system. Proceedings of World Geothermal Congress, Florence 2:833–842Google Scholar
  28. Cameli GM, Fiordelisi A (1988) Distribuzione delle anomalie geotermiche dell’alto Lazio, internal report. J.V. ENEL AGIP, Pisa (in Italian)Google Scholar
  29. Cameli GM, Dini I, Liotta D (1993) Upper crustal structure of the Larderello geothermal field as a feature of post-collisional extensional tectonics (southern Tuscany, Italy). Tectonophysics 224:413–423CrossRefGoogle Scholar
  30. Carabelli E, Moia F, Fiordelisi A (1984) Seismic monitoring during geothermal wells stimulation as contribution to the individuation of prevailing fracturation trends. Presented at Seminar on Utilization of Geothermal Energy for Electric Power Production and Space Heating, Florence, Italy, May 14–17, pp 1–31Google Scholar
  31. Carapezza ML, Ranaldi M, Gattuso A, Pagliuca NM, Tarchini L (2015) The sealing capacity of the cap rock above the Torre Alfina geothermal reservoir (Central Italy) revealed by soil CO2 flux investigations. J Volcanol Geotherm Res 291:25–34CrossRefGoogle Scholar
  32. Carmignani L, Decandia FA, Disperati L, Fantozzi PL, Lazzarotto A, Liotta D, Meccheri M (1994) Tertiary extensional tectonics in Tuscany (Northern Apennines Italy). Tectonophysics 238:295–315CrossRefGoogle Scholar
  33. Carmignani L, Conti P, Cornamusini G, Pirro A, (2013) Geological map of Tuscany (Italy). Journal of Maps 9(4):487–497CrossRefGoogle Scholar
  34. Chatelain J (1978) Étude fine de la sismicité en zone de collision continentale à l’aide d’un réseau de stations portables: la région Hindu–Kush–Pamir, Ph.D. thesis, Université Paul Sabatier, Toulouse (in French)Google Scholar
  35. Chiarabba C, Amato A, Fiordelisi A (1995) Upper crustal tomographic images of the Amiata-Vulsini geothermal region Central Italy. J Geophys Res 100(B3):4053–4066CrossRefGoogle Scholar
  36. Chiarabba C, Jovane L, Di Stefano R (2005) A new view of Italian seismicity using 20 years of instrumental recordings. Tectonophysics 395:251–268CrossRefGoogle Scholar
  37. Collettini C, Barchi M, Pauselli C, Federico C, Pialli G (2000) Seismic expression of active extensional faults in northern Umbria (Central Italy). J Geodyn 29:309–321CrossRefGoogle Scholar
  38. Console R, Murru M, Alessandrini B (1993) Foreshock statistics and their possible relationships to earthquake prediction in the Italian region. Bull Seismol Soc Am 83(4):1248–1263Google Scholar
  39. De Luca G, Scarpa R, Filippi L, Gorini A, Marcucci S, Marsan P, Milana G, Zambonelli E (1999) A detailed analysis of two seismic sequences in Abruzzo, Central Apennines, Italy. Jose 2:1–21Google Scholar
  40. Di Bucci D, Mazzoli S (2002) Active tectonics of the Northern Apennines and Adria geodynamics: new data and a discussion. J Geodyn 34:687–707CrossRefGoogle Scholar
  41. Dialuce G, Chiarabba C, DiBucci D, Doglioni C, Gasparini P, Lanari R, Priolo E, Zollo A, (2014) Indirizzi e linee guida per il monitoraggio della sismicitá, delle deformazioni del suolo e delle pressioni di poro nell’ambito delle attivitá antropiche. GdL MISE. Roma. URL: unmig.mise.gov.it/ unmig/agenda/upload/85_238.pdf (in Italian)
  42. Faenza L, Pierdominici S (2007) Statistical occurrence analysis and spatio-temporal distribution of earthquakes in the Apennines (Italy). Tectonophysics 439:13–31CrossRefGoogle Scholar
  43. Frepoli F, Amato A (1997) Contemporaneous extension and compression in the Northern Apennines from earthquake fault-plane solutions. Geophys J Int 139:483–498Google Scholar
  44. Galadini F, Galli P (2000) Active tectonics in the Central Apennines, Italy—input data for seismic hazard assessment. Nat Hazards 22:225–270CrossRefGoogle Scholar
  45. Gasperini P (2002) Local magnitude revaluation for recent Italian earthquakes (1981-1996). J Seismol 6:503–524CrossRefGoogle Scholar
  46. Guidoboni E, Ferrari G, Mariotti D, Comastri A, Tarabusi G, Sgattoni G, Valensise G (2018) CFTI5Med, Catalogo dei Forti Terremoti in Italia (461 a.C.-1997) e nell’area Mediterranea (760 a.C.-1500). Istituto Nazionale di Geofisica e Vulcanologia (INGV) http://storing.ingv.it/cfti/cfti5/
  47. Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84(B5):2348–2350CrossRefGoogle Scholar
  48. ISIDe working group (2016). Italian seismological instrumental and parametric database, version 1.0, DOI:  https://doi.org/10.13127/ISIDe. http://cnt.rm.ingv.it/en/iside
  49. Jolivet L, Faccenna C, Goffé B, Mattei M, Rossetti F, Brunet C, Storti F, Funiciello R, Cadet JP, d'Agostino N, Parra T (1998) Midcrustal shear zones in post-orogenic extension: example from the northern Tyrrhenian Sea (Italy). J Geophys Res 103:12123–12160CrossRefGoogle Scholar
  50. Lahr JC (1999, revised 2012) HYPOELLIPSE: a computer program for determining local earthquake hypocentral parameters, magnitude, and first-motion pattern: U.S. Geological Survey Open-File Report 99–23, version 1.1, 119 p. and software, available at https://pubs.usgs.gov/of/1999/ofr-99-0023/
  51. Lee WHK, Lahr JC (1975) HYP071 (Revised): a computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes. U. S. Geological Survey Open File Report 75–311, 113 ppGoogle Scholar
  52. Lee R, Bennett E, Meagher KL (1972) A method of estimating magnitude of local earthquakes from signal duration. Open File Report, U. S. Geological Survey, 28 ppGoogle Scholar
  53. Liotta D., 1994 Structural features of the Radicofani Basin along the Piancastagnaio (Mt.Amiata)-S. Casciano dei Bagni (Mt. Cetona) cross section. Mem.Soc.Geol.It., 48/2, 401–408Google Scholar
  54. Liotta D (1996) Analisi del settore centro-meridionale del bacino pliocenico di Radicofani (Toscana meridionale). Boll Soc Geol Ital 115:115–143 (in Italian)Google Scholar
  55. Liotta D, Ranalli G (1999) Correlation between seismic reflectivity and rheology in extended lithosphere: southern Tuscany, inner northern Apennines, Italy. Tectonophysics 315:109–122CrossRefGoogle Scholar
  56. Liotta D, Salvatorini G (1994) Evoluzione sedimentaria e tettonica della parte centro-meridionale del bacino pliocenico di Radicofani. Studi Geologici Cemerti Vol Spec. 1994(1):65–77 (in Italian)Google Scholar
  57. Malinverno A, Ryan WBF (1986) Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5:227–254CrossRefGoogle Scholar
  58. Martini IP, Sagri M (1993) Tectono-sedimentary characteristics of late Miocene-Quaternary extensional basins of the northern Apennines, Italy. Earth Sci Rev 34:197–233.  https://doi.org/10.1016/0012-8252(93)90034-5 CrossRefGoogle Scholar
  59. Nappi G, Renzulli A, Santi P (1991) Evidence of incremental growth in the Vulsinian calderas (Central Italy). Verma-Surendra, P, ed., calderas: genesis, structure and unrest. J Volcanol Geotherm Res 47:13–31CrossRefGoogle Scholar
  60. Nappi G, Renzulli A, Santi P, Gillot PY (1995) Geological evolution and geochronology of the Vulsini Volcano District (Central Italy). Boll Soc Geol Ital 114:599–613Google Scholar
  61. Nicoletti M, Petrucciani C, Piro M, Trigila R (1981) Nuove datazioni vulsine per uno schema di evoluzione dell’attività vulcanica: Nota II: Il quadrante sud-occidentale: Periodico di Mineralogia. 50:141–169 (in Italian)Google Scholar
  62. Pace B, Peruzza L, Lavecchia G, Boncio P (2006) Layered seismogenic source model and probabilistic seismic-hazard analyses in Central Italy. Bull Seismol Soc Am 96:107–132CrossRefGoogle Scholar
  63. Paige CC, Saunders MA (1982) LSQR: an algorithm for sparse linear equations and sparse least squares. Trans Math Software 8:43–71.  https://doi.org/10.1145/355984.355989 CrossRefGoogle Scholar
  64. Palladino DM, Simei S (2005a) Eruptive dynamics and caldera collapse during the Onano eruption, Vulsini. Italy Bull Volcanol 67:423–440.  https://doi.org/10.1007/s00445-004-0385-3 CrossRefGoogle Scholar
  65. Palladino DM, Simei S (2005b) The latera volcanic complex (Vulsini, Central Italy): eruptive activity and caldera evolution. Acta Vulcanol 17:75–80Google Scholar
  66. Pascucci V, Costantini A, Martini PI, Dringoli R (2006) Tectono-sedimentary analysis of complex, extensional, Neogene basin formed on thrust-faulted, Northern Apennines hinterland: Radicofani Basin, Italy. Sediment Geol 183:71–97CrossRefGoogle Scholar
  67. Passerini P (1964) Il Monte Cetona (prov. di Siena). Boll Soc Geol Ital 83:219–338 (in Italian)Google Scholar
  68. Peccerillo A (2005) Plio-quaternary volcanism in Italy: petrology, geochemistry, Geodynamics. Springer. doi  https://doi.org/10.1007/3-540-29092-3
  69. Peccerillo A, Martinotti G (2006) The Western Mediterranean lamproitic magmatism: origin and geodynamic significance. Terra Nova 18:109–117CrossRefGoogle Scholar
  70. Pontoise B, Monfret T (2004) Shallow seismogenic zone detected from an offshore-onshore temporary seismic network in the Esmeraldas area (northern Ecuador). Geochem Geophys Geosyst 5:Q02009.  https://doi.org/10.1029/2003GC000561 CrossRefGoogle Scholar
  71. Raleigh CB, Healy JH, Bredehoeft JD (1976) An experiment in earthquake control at Rangely, Colorado. Science 191(4233):1230–1237.  https://doi.org/10.1126/science.191.4233.1230 CrossRefGoogle Scholar
  72. Reasenberg PA, Oppenheimer D (1985) FPFIT, FPPLOT and FPPAGE: Fortran computer programs for calculating and displaying earthquake fault-plane solutions. US Geological Survey Open-File Report 85–739: 25 ppGoogle Scholar
  73. Rovida A, Locati M, Camussi R, Lolli B, Gasperini P (eds) (2016) CPTI15, the 2015 version of the parametric catalogue of Italian earthquakes. Istituto Nazionale di Geofisica e Vulcanologia doi  https://doi.org/10.6092/INGV.IT-CPTI15
  74. Selvaggi G, Amato A (1992) Subcrustal earthquakes in the northern Apennines (Italy): evidence for a still active subduction? Geophys Res Lett 19:2127–2130CrossRefGoogle Scholar
  75. Sparks RSJ (1975) Stratigraphy and geology of the ignimbrites of Vulsini volcano, Central Italy. Geol Rundsch 64:497–523CrossRefGoogle Scholar
  76. Terlizzese F (2016) Linee guida per l’utilizzazione della risorsa geotermica a media e alta entalpia, GdL Mise, Roma. http://unmig.mise.gov.it/unmig/geotermia/lineeguida.pdf (in Italian)
  77. Toro B (1978) Residual gravity anomalies and deep structure in the volcanic region of northern Latium. Geol Romana 17:35–44Google Scholar
  78. Trigila R (1985) Vulsini volcanoes, in 1995 International Association of Volcanology and Chemistry of the Earth’s interior scientific assembly, Giardini-Naxos (Italy), Excursion Guidebook, 4–12Google Scholar
  79. Varekamp JC (1980) The geology of the Vulsinian area, Lazio, Italy. Bull Volcanol 43(3):489–503.  https://doi.org/10.1007/BF02597687 CrossRefGoogle Scholar
  80. Vignaroli G, Pinton A, De Benedetti AA, Giordano G, Rossetti F, Soligo M, Berardi G (2013) Structural compartmentalisation of a geothermal system, the Torre Alfina field (Central Italy). Tectonophysics 608:482–498CrossRefGoogle Scholar
  81. Vignaroli G, Berardi G, Billi A, Kele S, Rossetti F, Soligo M, Bernasconi SM, (2016) Tectonics, hydrothermalism, and paleoclimate recorded by Quaternary travertines and their spatio-temporal distribution in the Albegna basin, central Italy: Insights on Tyrrhenian margin neotectonics. Lithosphere 8(4):335–358CrossRefGoogle Scholar
  82. Volpi G, Magri F, Colucci F, Fisher T, de Caro M, Crosta GB (2018) Modeling highly buoyant flows in the Castel Giorgio: Torre Alfina deep geothermal reservoir. Geofluids 2018:3818629, 19 pages.  https://doi.org/10.1155/2018/3818629 CrossRefGoogle Scholar
  83. Waldhauser F (2001) HypoDD: a program to compute double-difference hypocenter locations. U.S. Geol. Surv, Open File Rep. 01–113, Menlo Park, CaliforniaGoogle Scholar
  84. Waldhauser F, Ellsworth WL (2000) A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California. Bull Seismol Soc Am 90:1353–1368.  https://doi.org/10.1785/0120000006 CrossRefGoogle Scholar
  85. Washington HS (1906) The Roman comagmatic region: Carnegie Institution of Washington publication 57:199 ppGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Arianna Lisi
    • 1
    Email author
  • Alessandro Marchetti
    • 2
  • Alberto Frepoli
    • 2
  • Nicola Mauro Pagliuca
    • 1
  • Giuliana Mele
    • 1
  • Maria Luisa Carapezza
    • 1
  • Marco Caciagli
    • 3
  • Daniela Famiani
    • 1
  • Alessandro Gattuso
    • 1
    • 4
  • Thomas Braun
    • 5
  1. 1.Istituto Nazionale di Geofisica e VulcanologiaSezione di Roma 1Italy
  2. 2.Istituto Nazionale di Geofisica e VulcanologiaCentro Nazionale TerremotiRomeItaly
  3. 3.Istituto Nazionale di Geofisica e VulcanologiaSezione di BolognaItaly
  4. 4.Istituto Nazionale di Geofisica e VulcanologiaSezione di PalermoItaly
  5. 5.Istituto Nazionale di Geofisica e VulcanologiaOsservatorio di ArezzoItaly

Personalised recommendations