Rayleigh wave group velocity dispersion tomography of West Africa using regional earthquakes and ambient seismic noise

  • Yacouba OuattaraEmail author
  • Dimitri Zigone
  • Alessia Maggi
Original Article


West Africa could teach us much about the early tectonic history of Earth, but current seismic models of the regional crustal and lithospheric structure lack the resolution required to answer all but the most basic research questions. We have improved the resolution of group velocity maps of the West African Craton by complementing the uneven path distribution of earthquake-generated surface waves with surface waves reconstructed from ambient noise cross-correlations. Our joint dataset provides good spatial coverage of group velocity measurements from 20- to 100-s period, enabling us to reduce artifacts in our group velocity maps and improve their resolution. Our maps correlate well with regional geological features. At short periods, they highlight differences in crustal thickness, recent tectonic activity, and thick sediments. At long periods, we found lower velocities due to hot, thin lithosphere under the Pan-African mobile belt and faster velocities due to cold, thick lithosphere under the Man-Leo and Reguibat shields. Our higher resolution maps advance us a step towards revealing the detailed lithospheric structure and tectonic processes of West Africa.


West Africa Craton Rayleigh waves Dispersion Cross-correlation Ambient noise Group velocity 



The research described herein used seismological data from various global networks available through the Incorporated Research Institutions for Seismology (IRIS) Data Management Center (including Africa Array (AF), GEOSCOPE (G), Global Seismograph Network (GSN-IRIS/USGS), Global Telemetered Seismograph Network (GTSN-USAF/USGS), Instituto Superior Tecnico Broadband Seismic Network (IP), IRIS PASSCAL Experiment Stations (XB), MEDNET Project (MN), Morocco-Muenster (3D), and Seismic Network of Tunisia (TT)). We are grateful to the operators of these networks for ensuring the high quality of the data and making them publicly available. Earthquake parameters were obtained from the Global CMT catalog.

Y. Ouattara was supported by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) Young Scientist Award Grant, the Lamto Geophysical Station (Ivory Cost), and the CNRS-INSU TelluS-SYSTER program. Additional support in the form of computer equipment was provided by Institut de Physique du Globe de Strasbourg (IPGS). Y. Ouattara would like to thank Professor A. Diawara, director of the Lamto Geophysical Station, for his advice and moral support in seeking a PhD in seismology in France, and Professor B. C. Sombo for accepting him in his research laboratory in Abidjan and for supervising part of his thesis work. The manuscript benefitted from constructive comments by Michael Pasyanos and Editor Mariano Garcia-Fernandez.

Supplementary material (108 kb)
(ZIP 108 KB)


  1. Becker TW (2012) On recent seismic tomography for the western United States. Geochem Geophys Geosyst 13. CrossRefGoogle Scholar
  2. Begg GC, Griffin WL, Natapov LM, O’Reilly SY, Grand SP, O’Neill CJ, Hronsky JMA, Djomani YP, Swain CJ, Deen T, Bowden P (2009) The lithospheric architecture of Africa: seismic tomography, mantle petrology, and tectonic evolution. Geosphere 5:23–50. CrossRefGoogle Scholar
  3. Ben-Zion Y (2008) Collective behavior of earthquakes and faults: continuum-discrete transitions, progressive evolutionary changes, and different dynamic regimes. Rev Geophys 46.
  4. Bensen GD, Ritzwoller MH, Barmin MP, Levshin AL, Lin F, Moschetti MP, Shapiro NM, Yang Y (2007) Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int 169:1239–1260. CrossRefGoogle Scholar
  5. Bills BG, Adams KD, Wesnousky SG (2007) Cosity structure of the crust and upper mantle in western Nevada from isostatic rebound patterns of the late Pleistocene Lake Lahontan high shoreline. J Geophys Res 112,
  6. Binks RM, Fairhead JD (1992) A plate tectonic setting for Mesozoic rifts of West and Central Africa. Tectonophysics 213:141–151CrossRefGoogle Scholar
  7. Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4.
  8. Campillo M, Roux P (2015) Crust and lithospheric structure - seismic imaging and monitoring with ambient noise correlations. In: Treatise on geophysics, Elsevier, pp 391– 417Google Scholar
  9. Chanard K, Avouac J, Ramillien G, Genrich J (2014) Modeling deformation induced by seasonal variations of continental water in the Himalaya region: sensitivity to Earth elastic structure. J Geophys Res Solid Earth 119:5097– 5113CrossRefGoogle Scholar
  10. Craig TJ, Chanard K, Calais E (2017) Hydrologically-driven crustal stresses and seismicity in the New Madrid Seismic Zone. Nat Commun 8:2143. CrossRefGoogle Scholar
  11. Debayle E, Sambridge M (2004) Inversion of massive surface wave data sets: model construction and resolution assessment. J Geophys Res 109.
  12. Djomani YHP (1993) Apport de la gravimetrie à l étude de la lithosphère continentale et implications géodynamiques : Etude d’un bombement intraplaque : Le massif de l’Adamaoua (Cameroun).́ thèse de Doctorat, université PARIS Xl ORSAY. Spé,cialité : Géophysique 229Google Scholar
  13. Dorbath L, Montagner JP (1983) Upper mantle heterogeneities in Africa deduced from Rayleigh wave dispersion. Phys Earth Planet Inter 32:218–225CrossRefGoogle Scholar
  14. Dziewonski A, Bloch S, Landisman M (1969) A technique for the analysis of transient seismic signals. Bull seis Soc Am 59:427–444Google Scholar
  15. Fairhead JD, Reeves CV (1977) Teleseismic delay times, bouguer anomalies and inferred thickness of the african lithosphere. Earth Planet Sci Lett 36:63–76CrossRefGoogle Scholar
  16. Gangopadhyay A, Pulliam J, Sen MK (2007) Waveform modelling of teleseismic S, Sp, SsPmP, and shear-coupled PL waves for crust- and upper-mantle velocity structure beneath Africa. Geophys J Int 170:1210–1226. CrossRefGoogle Scholar
  17. Gomez F, Beauchamp W, Barazangi M (2000) Role of the Atlas Mountains (Northwest Africa) within the African-Eurasian Plate-Boundary Zone. Geology 28(9):775–778. CrossRefGoogle Scholar
  18. Guiraud R, Bosworth W, Thierry J, Delplanque A (2005) Phanerozoic geological evolution of Northern and Central africa: An overview. J Afr Earth Sci 43:83–143CrossRefGoogle Scholar
  19. Hadiouche O, Jobert N (1988) Geographical distribution of surface-wave velocities and 3-D upper-mantle structure in Africa. Geophys J 95:87–109CrossRefGoogle Scholar
  20. Hadiouche O, Jobert N, Montagner JP (1989) Anisotropy of the African continent inferred from surface waves. Phys Earth Planet Inter 58:61–89CrossRefGoogle Scholar
  21. Hansen PC, O’Leary DP (1993) The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci Comp 14(6):1487–1503CrossRefGoogle Scholar
  22. Hasselmann K (1963) A statistical analysis of the generation of microseisms. Rev Geophys Space Phys 1:177–210CrossRefGoogle Scholar
  23. Hazler SE, Sheean AF, McNamara DE, Walter WR (2001) One-dimensional shear velocity structure of northern africa from rayleigh wave group velocity dispersion. Pure appl Geophys 158:1475–1493CrossRefGoogle Scholar
  24. Hermann RB (2013) Computer programs in seismology: an evolving tool for instruction and research. Seismol Res Lett 84:1081–1088. CrossRefGoogle Scholar
  25. Lesquer A, Bourmatte A, Ly S, Dautria J (1989) First heat flow determination from the central Sahara : relationship with the Pan-African belt and Hoggar domal uplift. J Afr Earth Sci 9:41–48CrossRefGoogle Scholar
  26. Levshin A, Ratnikova L, Berger J (1992) Peculiarities of surface wave propagation across central Eurasia. Bull seism Soc Am 82:2464–2493Google Scholar
  27. Levshin AL, Yanovskaya TB, Lander AV, Bukchin BG, Barmin MP, Ratnikova LI, Its EN (1989) Seismic surface waves in a laterally inhomogeneous Earth. Kluwer, DordrechtGoogle Scholar
  28. Lin FC, Ritzwoller MH, Townend J, Bannister S, Savage MK (2007) Ambient noise Rayleigh wave tomography of New Zealand. Geophys J Int 170:649–666. CrossRefGoogle Scholar
  29. Longuet-Higgings M (1950) A theory of the origin of microseisms. Philos Trans R Soc Lond A243 (857):1–35CrossRefGoogle Scholar
  30. Ma Z, Masters G (2014) A new global rayleigh- and Love-wave group velocity dataset for constraining lithosphere properties. Bull Seismol Soc Am 104(4):2007–2026. CrossRefGoogle Scholar
  31. Ma Z, Masters G, Laske G, Pasyanos M (2014) A comprehensive dispersion model of surface wave phase and group velocity for the globe. Geophys J Int 199:113–135. CrossRefGoogle Scholar
  32. Maggi A, Debayle E, Priestley K, Barruol G (2006) Multimode surface waveform tomography of the Pacific ocean: a closer look at the lithospheric cooling signature. Geophys J Int 166:1384–1397. CrossRefGoogle Scholar
  33. Pasyanos ME, Nyblade AA (2007) A top to bottom lithospheric study of Africa and Arabia. Tectonophysics 444:27–44. CrossRefGoogle Scholar
  34. Pasyanos ME, Walter WR, Hazler SE (2001) A surface wave dispersion study of the Middle East and North Africa for monitoring the comprehensive nuclear-test-ban treaty. Pure Appl Geophys 158:1445–1474CrossRefGoogle Scholar
  35. Pasyanos ME, Walter WR, Flanagan MP, Goldstein P, Bhattacharyya J (2004) Building and testing an a priori geophysical model for Western Eurasia and North Africa. Pure Appl Geophys 161:235–181. CrossRefGoogle Scholar
  36. Pasyanos ME, Masters TG, Laske G, Ma Z (2014) LITHO1.0: An Updated crust and lithospheric model of the Earth. Earth, J Geophys Res Solid Earth 119:2153–2173. CrossRefGoogle Scholar
  37. Pedersen HA, Mars J, Amblard PO (2003) Improving group velocity measurements by energy reassignment. Geophysics 68:677–684CrossRefGoogle Scholar
  38. Poli P, Pedersen HA, Campillo M (2012) The POLENET/LAPNET Working Group, Noise directivity and group velocity tomography in a region with small velocity contrasts: the northern Baltic Shield. Geophys J Int 192:413–424. CrossRefGoogle Scholar
  39. Priestley K, Tilmann F (2009) Relationship between the upper mantle high velocity seismic lid and the continental lithosphere. Lithos 109.
  40. Priestley K, McKenzie D, Debayle E, Pilidou S (2008) The African upper mantle and its relationship to tectonics and surface geology. Geophys J Int 175:1108–1126. CrossRefGoogle Scholar
  41. Ritsema J, van Heijst H (2000) New seismic model of the upper mantle beneath Africa. Geol 28:63–66CrossRefGoogle Scholar
  42. Ritzwoller MH, Levshin AL (1998) Eurasian surface wave tomography : Group velocities. J Geophys Res 103:4839–4878CrossRefGoogle Scholar
  43. Ritzwoller MH, Shapiro NM, Levshin AL, Leahy GM (2001) Crustal and upper mantle structure beneath Antarctica and surrounding oceans. J Geophys Res 106:30645–30670CrossRefGoogle Scholar
  44. Romanowicz B (2003) Global mantle tomography: progress status in the past 10 years. Ann Rev Earth Planet Sci 31:303–328. CrossRefGoogle Scholar
  45. Sebai A, Stutzmann E, Montagner JP, Sicilia D, Beucler E (2006) Anisotropic structure of the African upper mantle from Rayleigh and Love wave tomography. Phys Earth Planet Inter 155:48–62. CrossRefGoogle Scholar
  46. Shapiro NM, Campillo M (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys Res Lett 31. CrossRefGoogle Scholar
  47. Shapiro NM, Campillo M, Stehly L, Ritzwoller MH (2005) High-resolution surface-wave tomography from ambient seismic noise. Science 307:1615–1618CrossRefGoogle Scholar
  48. Shapiro NM, Ritzwoller MH, Bensen GD (2006) Source location of the 26 sec microseism from cross-correlations of ambient seismic noise. Geophys Res Lett 33. CrossRefGoogle Scholar
  49. Shen W, Ritzwoller MH (2016) Crustal and uppermost mantle structure beneath the United States. J Geophys Res Solid Earth 121:4306–4342. CrossRefGoogle Scholar
  50. Shen W, Ritzwoller MH, Schulte-Pelkum V (2013) A 3-D model of the crust and uppermost mantle beneath the Central and Western US by joint inversion of receiver functions and surface wave dispersion. J Geophys Res Solid Earth 118:262–176. CrossRefGoogle Scholar
  51. Suleiman AS, Doser DI, Yarwood DR (1993) Source parameters of earthquakes along the coastal margin of West Africa and comparisons with earthquakes in other coastal margin settings. Tectonophysics 222:79–91CrossRefGoogle Scholar
  52. Vdovin O, Rial JA, Levshin AL, Ritzwoller MH (1999) Group-velocity tomography of South America and the surrounding oceans. Geophys J Int 136:324–340CrossRefGoogle Scholar
  53. Villasenor A, Ritzwoller M, Levshin A, Barmin M, Engdahl E, Spakman W, Trampert J (2001) Shear velocity structure of central Eurasia from inversion of surface wave velocities. Phys Earth Planet Inter 123:169–184CrossRefGoogle Scholar
  54. Wilson M, Guiraud R (1992) Magmatism and rifting in Western and Central Africa, from Late Jurassic to recent times. Tectonophysics 213:203–225CrossRefGoogle Scholar
  55. Yang Y, Li A, Ritzwoller MH (2008a) Crustal and uppermost mantle structure in southern Africa revealed from ambient noise and teleseismic tomography. Geophys J Int 174:235–248. CrossRefGoogle Scholar
  56. Yang Y, Ritzwoller MH, Lin FC, Moschetti MP, Shapiro NM (2008b) Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography. J Geophys Res 113.
  57. Yao H, Beghein C, van der Hilst RD (2008) Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis – II. Crustal and upper-mantle structure. Geophys J Int 173:205–219. CrossRefGoogle Scholar
  58. Yao H, van der Hilst RD, Montagner J (2010) Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography. J Geophys Res 115.
  59. Zaroli C (2016) Global seismic tomography using Backus-Gilbert inversion. Geophys J Int 207. CrossRefGoogle Scholar
  60. Zaroli C, Koelemeijer P, Lambotte S (2017) Toward seeing the earth’s interior through unbiased tomographic lenses. Geophys Res Lett 44. CrossRefGoogle Scholar
  61. Zigone D, Ben-Zion Y, Campillo M, Roux P (2015) Seismic tomography of the southern california plate boundary region from noise-based rayleigh and love waves. Pure Appl Geophys 172:1007–1032. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Yacouba Ouattara
    • 1
    • 2
    Email author
  • Dimitri Zigone
    • 1
  • Alessia Maggi
    • 1
  1. 1.Institut de Physique du Globe de Strasbourg, Ecole et Observatoire des Sciences de la TerreStrasbourg University/CNRSStrasbourgFrance
  2. 2.UFR des Sciences de la Terre et des Ressources Minières, Laboratoire de Géophysique Appliquée, Station Géophysique de LamtoUniversité Felix Houphouët-Boigny/AbidjanAbidjanCôte d’Ivoire

Personalised recommendations